Growing range of correlated motion in a polymer melt on cooling towards the glass transition
Many liquids cooled to low temperatures form glasses (amorphous solids) instead of crystals. As the glass transition is approached, molecules become localized and relaxation times increase by many orders of magnitude1. Many features of this ‘slowing down’ are reasonably well described2 by the mode-coupling theory of supercooled liquids3. The ideal form of this theory predicts a dynamical critical temperature T c at which the molecules become permanently trapped in the ‘cage’ formed by their neighbours, and vitrification occurs. Although there is no sharp transition, because molecules do eventually escape their cage, its signature can still be observed in real and simulated liquids. Unlike c…