0000000000594245
AUTHOR
Zahra Atlasbaf
Dyadic Green's function for the electrically biased graphene-based multilayered spherical structures
Abstract Dyadic Green's function for a multilayered spherical structure with alternating graphene-dielectric shells is extracted in this paper. To this end, the unknown expansion coefficients of the scattering superposition method are obtained by considering graphene local surface currents at the interface of two adjacent layers. To validate the formulas, the procedure of Mie scattering analysis employing our formulas is clarified and the extinction efficiencies of various graphene-based nanoparticles are computed. The possibility of using the proposed structure in the design of multi-band optical absorbers is discussed in detail. Moreover, a closed-form formula for obtaining the Purcell fa…
Multi-frequency super-scattering from sub-wavelength graphene-coated nanotubes
A cylindrical multilayered structure with three coupled graphene shells is shown to behave as a dual-band super-scatterer at mid-infrared frequencies. Under the 2D plasmonic nature of graphene material, multiple scattering resonances are attained in the deep subwavelength regime using an isotropic material. In the proposed structure, we efficiently exploit the existing three plasmonic resonances in each scattering channel. These resonances are tailored by dispersion engineering, which is simply displayed through the Bohr model applied to the associated planar structure. For the super-scatterer design, it is essential that the resonances of multiple channels coincide in a single frequency. H…
Multi-frequency near-field enhancement with graphene-coated nano-disk homo-dimers.
In this paper, a 3D sub-wavelength graphene-coated nano-disk dimer (GDD) is proposed for multi-frequency giant near-field enhancement. We observed that the dual-band operation originates from the excitation of hybridized localized surface plasmons on top and bottom faces of the disks along with the mutual coupling from the adjacent particle. Due to the sub-wavelength nature of the disks, the excited localized surface plasmons on the sidewalls are weak but they still can affect the dual operating bands. On the other hand, the strength and resonance frequency of the enhanced fields can be simply modulated by tuning the relative distances of 2D graphene disks on top and bottom faces. Adjustabl…