0000000000594354
AUTHOR
Isabelle Kraus
Microactuators: Control of the Properties of Micrometer Sized Actuators from Liquid Crystalline Elastomers Prepared in a Microfluidic Setup (Adv. Funct. Mater. 24/2010)
In this article new results on the preparation of monodisperse particles from a liquid crystalline elastomer in a microfluidic setup are presnted. For this, droplets from a liquid crystalline monomer are prepared in a microfluidic device and polymerized while they are flowing inside a microtube. The particles obtained by this method possess an internal orientation, which gives them actuating properties. When they are heated into the isotropic phase of the liquid crystalline material they show a reversible change in shape whereby they change their length in one direction by almost 100%. It is shown how the variation of experimental parameters during their synthesis impacts the properties of…
Engineering Polymer Microparticles by Droplet Microfluidics
Capillary-based flow-focusing and co-flow microsystems were developed to produce sphere-like polymer microparticles of adjustable sizes in the range of 50 to 600 μm with a narrow size distribution (CV < 5%) and different morphologies (core-shell, janus, and capsules). Rod-like particles whose length was conveniently adjusted between 400 μm and few millimeters were also produced using the same microsystems. Influence of operating conditions (flow rate of the different fluid, microsystem characteristic dimensions, and design) as well as material parameters (viscosity of the different fluids and surface tension) was investigated. Empirical relationships were thus derived from experimental data…
Control of the Properties of Micrometer-Sized Actuators from Liquid Crystalline Elastomers Prepared in a Microfluidic Setup
In this article new results on the preparation of monodisperse particles from a liquid crystalline elastomer in a microfluidic setup are presnted. For this, droplets from a liquid crystalline monomer are prepared in a microfluidic device and polymerized while they are flowing inside a microtube. The particles obtained by this method possess an internal orientation, which gives them actuating properties. When they are heated into the isotropic phase of the liquid crystalline material they show a reversible change in shape whereby they change their length in one direction by almost 100%. It is shown how the variation of experimental parameters during their synthesis impacts the properties of…