0000000000594817
AUTHOR
Mario Francesco Romeo
PPG/ECG Multisite Combo System Based on SiPM Technology
Two versions of a PPG/ECG combined system have been realized and tested. In a first version a multisite system has been equipped by integrating 3 PPG optodes and 3 ECG leads, whereas in another setup a portable version has been carried out. Both versions have been realized by equipping the optical probes with SiPM detectors. SiPM technology is expected to bring relevant advantages in PPG systems and overcome the limitations of physiological information extracted by state of the art PPG, such as poor sensitivity of detectors used for backscattered light detection and motion artifacts seriously affecting the measurements repeatability and pulse waveform stability. This contribution presents t…
Fiberless, Multi-Channel fNIRS-EEG System Based on Silicon Photomultipliers: Towards Sensitive and Ecological Mapping of Brain Activity and Neurovascular Coupling
Portable neuroimaging technologies can be employed for long-term monitoring of neurophysiological and neuropathological states. Functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) are highly suited for such a purpose. Their multimodal integration allows the evaluation of hemodynamic and electrical brain activity together with neurovascular coupling. An innovative fNIRS-EEG system is here presented. The system integrated a novel continuous-wave fNIRS component and a modified commercial EEG device. fNIRS probing relied on fiberless technology based on light emitting diodes and silicon photomultipliers (SiPMs). SiPMs are sensitive semiconductor detectors, whose large…
Wearable, Fiber-less, Multi-Channel System for Continuous Wave Functional Near Infrared Spectroscopy Based on Silicon Photomultipliers Detectors and Lock-In Amplification
Development and in-vivo validation of a Continuous Wave (CW) functional Near Infrared Spectroscopy (fNIRS) system is presented. The system is wearable, fiber-less, multi-channel (16×16, 256 channels) and expandable and it relies on silicon photomultipliers (SiPMs) for light detection. SiPMs are inexpensive, low voltage and resilient semiconductor light detectors, whose performances are analogous to photomultiplier tubes (PMTs). The advantage of SiPMs with respect to PMTs is that they allow direct contact with the scalp and avoidance of optical fibers. In fact, the coupling of SiPMs and light emitting diodes (LEDs) allows the transfer of the analog signals to and from the scalp through thin …