0000000000594867
AUTHOR
H.h. Stroke
How Lasers Can Help Probe the Distribution of Nuclear Magnetism
Publisher Summary High-resolution atomic spectroscopy has played an important part in the study of nuclear electric and magnetic structure. Laser spectroscopy has been crucial for the measurement of isotope shifts, which reflect the variations of nuclear charge radii and shapes. High sensitivity and frequency resolution have allowed experiments to be carried out systematically over extensive ranges of stable and radioactive isotopes with lifetime as short as a few milliseconds. While the laser experiments also yield results for nuclear multipole moments, no measurements are obtained of the distribution of nuclear magnetization. Nuclear structure properties can be probed by penetrating elect…
Dipole and quadrupole moments of $^{73-78}$Cu as a test of the robustness of the $Z=28$ shell closure near $^{78}$Ni
Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground states of neutron-rich Cu73–78 isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. The nuclear moments of the less exotic Cu73,75 isotopes were remeasured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and 2978Cu (N=49) in particular, are used to investigate excitations of the assumed doubly magic Ni78 core through comparisons with large-scale shell-model calculations. Despite the narrowing of the Z=28 shell gap…
Nuclear mean-square charge radii of $^{63,64,66,68−82}$Ga nuclei: No anomalous behavior at N=32
Collinear laser spectroscopy was performed on the 63,64,66,68−82Ga isotopes with neutron numbers from N = 32 to N = 51. These measurements were carried out at the ISOLDE radioactive ion beam facility at CERN. Here we present the nuclear mean-square charge radii extracted from the isotope shifts and, for the lighter isotopes, new spin and moment values. New ground-state nuclear spin and moments were extracted from the hyperfine spectra of 63,70Ga, measured on an atomic transition in the neutral atom. The ground-state spin of 63Ga is determined to be I = 3/2. Analysis of the trend in the change in mean-square charge radii of the gallium isotopes demonstrates that there is no evidence of anoma…