0000000000595075
AUTHOR
Stefan Rechenberger
Asymptotically safe Lorentzian gravity.
The gravitational asymptotic safety program strives for a consistent and predictive quantum theory of gravity based on a non-trivial ultraviolet fixed point of the renormalization group (RG) flow. We investigate this scenario by employing a novel functional renormalization group equation which takes the causal structure of space-time into account and connects the RG flows for Euclidean and Lorentzian signature by a Wick-rotation. Within the Einstein-Hilbert approximation, the $\beta$-functions of both signatures exhibit ultraviolet fixed points in agreement with asymptotic safety. Surprisingly, the two fixed points have strikingly similar characteristics, suggesting that Euclidean and Loren…
R2phase diagram of quantum Einstein gravity and its spectral dimension
Within the gravitational asymptotic safety program, the renormalization group (RG) flow of the ${R}^{2}$ truncation in three and four spacetime dimensions is analyzed in detail. In particular, we construct RG trajectories which emanate from the non-Gaussian UV fixed point and possess long classical regimes where the effective average action is well approximated by the classical Einstein-Hilbert action. As an application we study the spectral dimension of the effective quantum Einstein gravity spacetimes resulting from these trajectories, establishing that the picture of a multifractal spacetime is robust under the extension of the truncated theory space. We demonstrate that regimes of const…