0000000000595401

AUTHOR

David J. Waters

0000-0001-9105-9953

Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations

AbstractPseudosection modelling is rapidly becoming an essential part of a petrologist's toolkit and often forms the basis of interpreting the tectonothermal evolution of a rock sample, outcrop, or geological region. Of the several factors that can affect the accuracy and precision of such calculated phase diagrams, “geological” uncertainty related to natural petrographic variation at the hand sample- and/or thin section-scale is rarely considered. Such uncertainty influences the sample's bulk composition, which is the primary control on its equilibrium phase relationships and thus the interpreted pressure–temperature (P–T) conditions of formation. Two case study examples—a garnet–cordierit…

research product

Phase equilibria modelling of retrograde amphibole and clinozoisite in mafic eclogite from the Tso Morari massif, northwest India: constraining the P -T -M (H2 O) conditions of exhumation

Phase equilibria modelling of post-peak metamorphic mineral assemblages in (ultra)high-P mafic eclogite from the Tso Morari massif, Ladakh Himalaya, northwest India, has provided new insights into the potential behaviour and source of metamorphic fluid during exhumation, and constrained the P–T conditions of hydration. A series of P–M(H2O) pseudosections constructed in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO) system show that a number of petrographically distinct hydration episodes occurred during exhumation from peak P–T conditions (~640 °C, 27–28 kbar), resulting in the formation of abundant compositionally zoned amphibole and minor clinozoisite poikiloblasts at the exp…

research product

Quantifying the P-T-t conditions of north-south Lhasa terrane accretion: new insight into the pre-Himalayan architecture of the Tibetan plateau

An integrated field, petrological and geochronological study of the Basong Tso region of south-eastern Tibet has constrained the timing and P–T conditions of north–south Lhasa terrane accretion and provides new insight into the tectonothermal evolution of the Tibetan plateau. Two distinct high-grade metamorphic belts are recognized in the region: a southern belt (the Basong Tso complex) that consists of sheared schist and orthogneiss; and a northern belt (the Zhala complex) that comprises paragneiss and granite. Combined pseudosection modelling and U–Pb geochronology of monazite and zircon indicates that the Basong Tso complex records peak metamorphic conditions of 9 ± 0.5 kbar and 690 ± 25…

research product