0000000000595543

AUTHOR

Federica Valentini

showing 6 related works from this author

eta1-Allypalladium complexes with tridentate PNP’ ligand for the assembly of modified Screen Printed Electrodes: an electrochemical study.

2015

Specific Pd-based organometallic complex, in particular the [Pd(η1-CH2–CH=CH2)(P–N–P’)]BF4 was used for the assembly of chemically modified Screen Printed Electrodes (SPEs) and their electrochemical reactivity was also investigated. For this purpose potassium ferricyanide, hexaammineruthenium(III) chloride, sodium hexachloroiridate-(III) hydrate, ascorbic acid (AA), uric acid (UA), acetaminophen (Ac), guanine (G) and adenine (A) were used to study the electron-transfer processes, which occurred at modified SPEs, fabricated by using the [Pd(η1-CH2–CH=CH2)(P–N–P’)]BF4, applying the drop casting procedure. Interesting results were obtained in the case of the guanine (G) quantitative detection,…

Detection limitElectrocatalysis towards guanine/GP-N-P complexesGuanineAnalytical chemistryPd center dot P-N-P complexesElectrochemistryAscorbic acidHeterogeneous electron-transfer kinetic constantsAnalytical Chemistry: Pdchemistry.chemical_compoundPotassium ferricyanidechemistrychemically modified SPEsElectrodeElectrochemistryReactivity (chemistry)Settore CHIM/01 - Chimica Analitica: Pd; P-N-P complexes; chemically modified SPEs; Electrochemistry; Heterogeneous electron-transfer kinetic constants electro-catalysis towards nucleic acidsHydrateNuclear chemistryelectro-catalysis towards nucleic acids
researchProduct

Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs)

2014

Oxidized Single-Wall Carbon Nanohorns (o-SWCNHs) were used, for the first time, to assemble chemically modified Screen Printed Electrodes (SPEs) selective towards the electrochemical detection of Epinephrine (Ep), in the presence of Serotonine-5-HT (S-5HT), Dopamine (DA), Nor-Epineprhine (Nor-Ep), Ascorbic Acid (AA), Acetaminophen (Ac) and Uric Acid (UA). The Ep neurotransmitter was detected by using Differential Pulse Voltammetry (DPV), in a wide linear range of concentration (2-2500 μM) with high sensitivity (55.77 A M(-1) cm(-2)), very good reproducibility (RSD% ranging from 2 to 10 for different SPEs), short response time for each measurement (only 2s) and low detection of limit (LOD=0.…

Neurotransmitters; Screen Printed Electrodes (SPEs); Selective detection; SWCNHs; Biosensing Techniques; Electrochemical Techniques; Electrodes; Epinephrine; Limit of Detection; Nanostructures; Oxidation-Reduction; Reproducibility of Results; Biophysics; Biomedical Engineering; Biotechnology; Electrochemistry; Medicine (all)NanostructureEpinephrineScreen Printed Electrodes (SPEs)ElectrodeBiophysicsAnalytical chemistryBiomedical EngineeringReproducibility of ResultBiosensing TechniquesElectrochemistryNanomaterialsSWCNHs; Screen Printed Electrodes (SPEs); Neurotransmitters; Selective detectionBiosensing TechniqueSelective detectionLimit of DetectionElectrochemistrySWCNHSettore CHIM/01 - Chimica AnaliticaNeurotransmitterElectrodesDetection limitSWCNHsReproducibilityElectrochemical TechniqueChemistryMedicine (all)Reproducibility of ResultsGeneral MedicineElectrochemical TechniquesNeurotransmittersAscorbic acidNanostructuresLinear rangeBiophysicElectrodeDifferential pulse voltammetryOxidation-ReductionNuclear chemistryBiotechnology
researchProduct

Oxidized graphene in ionic liquids for assembling chemically modified electrodes: a structural and electrochemical characterization study

2012

Dispersions of graphene oxide (GO) nanoribbons in ionic liquids, ILs (either 1-butyl-3-methylimidazolium chloride (BMIM-Cl-) or 1-butylpyridinium chloride (-Bupy-Cl-)) have been used to assemble modified screen printed electrodes (SPEs). The graphene oxide/ionic liquid dispersions have been morphologically and structurally characterized by the use of several techniques: X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared (FT-IR) spectroscopy, high-resolution-transmission electron microscopy (HR-TEM). The assembled modified SPEs have then been challenged with various compounds and compared to several electro-active targets. In all cases high peak currents were detected, as wel…

Settore CHIM/03 - Chimica Generale e InorganicaChemistryGrapheneAnalytical chemistryOxideGlassy carbonElectrochemistryAnalytical Chemistrylaw.inventionchemistry.chemical_compoundX-ray photoelectron spectroscopyChemical engineeringlawElectrodeIonic liquidSettore CHIM/01 - Chimica AnaliticaGraphitegraphene Ionic Liquids sensorsSettore CHIM/02 - Chimica Fisica
researchProduct

Graphene and ionic liquids new gel paste electrodes for caffeic acid quantification

2015

Abstract Graphene/ionic liquids nanocomposite gels were synthesized by an electrochemical etching approach and fully characterized under a morphological and structural point of view. For this purpose, several analytical techniques were applied, as HR-TEM/EDX (High Resolution-Transmission Electron Microscopy/Energy Dispersive X-Ray Analysis); FE-SEM/EDX (Field Emission-Scanning Electron Microscopy/Energy Dispersive X-Ray Analysis); XPS (X-Ray Photoelectron Spectroscopy); FT-IR (Fourier Transform-Infrared Spectroscopy) and electrochemical techniques. After the characterization study, nanocomposite-gel paste electrodes were assembled, exhibiting a selective and specific detection toward the ca…

Analytical chemistrySurfaces Coatings and FilmAnti-oxidant agentsCondensed Matter PhysicAnti-oxidant agentIonic liquidElectrochemistrylaw.inventionNanocompositeschemistry.chemical_compoundX-ray photoelectron spectroscopylawgraphene Ionic liquids; nanocomposites; electrochemistry; caffeic acid; anti-oxidant agentsMaterials ChemistryElectrochemistryMoleculeElectrical and Electronic EngineeringInstrumentationSettore CHIM/02 - Chimica FisicaMaterials Chemistry2506 Metals and AlloySettore CHIM/03 - Chimica Generale e InorganicaDetection limitCaffeic acidNanocompositeNanocompositeGrapheneElectronic Optical and Magnetic MaterialMetals and AlloysCondensed Matter Physicsgraphene Ionic liquidsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonic liquidschemistryChemical engineeringIonic liquidElectrode2506Graphene
researchProduct

Thermal Properties, Raman Spectroscopy and Tem Images of Neutron-Bombarded Graphite

2013

Neutron-irradiated graphite to a total dose of 3.6 × 1016 n cm−2 was studied by DSC, Raman spectroscopy and transmission electron microscopy (TEM). The Wigner energy of neutron-irradiated graphite was 9.5 J/g as measured by DSC; it was released with an exothermal peak at 220°C. The Raman spectroscopy has confirmed the expected effect caused by neutron irradiation of the graphite substrate. The TEM imaging has shown that neutron-irradiated graphite can be effectively exfoliated by sonication in comparison to pristine graphite, which under similar conditions does not exfoliate at all. The interstitial Frenkel defects in neutron-irradiated graphite are intercalated between the graphene layers …

inorganic chemicalsMaterials scienceSonicationAnalytical chemistrylaw.inventionsymbols.namesakelawneutrons irradiationGeneral Materials ScienceNeutronSettore CHIM/01 - Chimica AnaliticaGraphitePhysical and Theoretical ChemistryWigner effectSettore CHIM/02 - Chimica FisicaWigner energySettore CHIM/03 - Chimica Generale e Inorganicaintegumentary systemGrapheneOrganic ChemistrygrapheneGraphite neutrons irradiation graphene exfoliation Wigner energy Raman spectroscopy TEM imagingtechnology industry and agricultureGraphite neutrons irradiation graphene exfoliation Wigner energy Raman spectroscopyTEM imagingexfoliationExfoliation jointAtomic and Molecular Physics and OpticsTransmission electron microscopyRaman spectroscopyTEM imagingbiological sciencessymbolsGraphitelipids (amino acids peptides and proteins)Raman spectroscopy
researchProduct

Sensor Properties of Pristine and Functionalized Carbon Nanohorns

2016

Nanodispersions of pristine single-wall carbon nanohorns (i.e., p-SWCNHs) and oxidized-SWCNHs (i.e.; o-SWCNHs) were used to modify screen printed electrode (SPE). p-SWCNHs and o-SWCNHs were fully characterized by using several analytical techniques, as: HR-TEM (High Resolution-Transmission Electron Microscopy), FE-SEM/EDX (Field Emission-Scanning Electron Microscopy/Energy Dispersive X-ray Analysis), Raman spectroscopy, thermogravimetric analysis, differential thermal analysis (DTA), and the Brunauer-Emmett-Teller (BET) method. The chemically modified SPEs were also characterized with Cyclic Voltammetry (CV), using several different electro-active targets. In all cases, p-SWCNHs showed bett…

Carbon NanohornThermogravimetric analysisScreen Printed ElectrodesMaterials scienceAnalytical chemistrychemistry.chemical_element02 engineering and technologyGlassy carbon010402 general chemistryElectrochemistry01 natural sciencesCarbon NanohornsAnalytical Chemistrysymbols.namesakeDifferential thermal analysisElectrochemistrySettore CHIM/01 - Chimica AnaliticaSingle-WallCarbon Nanohorns; Screen Printed Electrodes; Single-Wall; Analytical Chemistry; ElectrochemistryScreen Printed Electrode021001 nanoscience & nanotechnology0104 chemical scienceschemistryElectrodesymbolsCyclic voltammetry0210 nano-technologyRaman spectroscopyCarbonElectroanalysis
researchProduct