0000000000595686

AUTHOR

Małgorzata Kajta

showing 5 related works from this author

Triclosan-Evoked Neurotoxicity Involves NMDAR Subunits with the Specific Role of GluN2A in Caspase-3-Dependent Apoptosis

2018

Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitising products. A number of studies have shown the presence of TCS in different human tissues such as blood, adipose tissue, the liver, brain as well as in breast milk and urine. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are widely expressed in the central nervous system and which play key roles in excitatory synaptic transmission. There is, however, no data on the involvement of NMDAR subunits in the apoptotic and neurotoxic effects of TCS. Our experiments are the first to show that TCS used at environmentally relevant concentrations evoked NMDA-dependent effe…

0301 basic medicineProgrammed cell deathGluN1Protein subunitNeurotoxinsNeuroscience (miscellaneous)Glutamic AcidCaspase 3ApoptosisReceptors N-Methyl-D-AspartateArticle03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicinemedicineAnimalsGene SilencingRNA MessengerReceptorNeuronsL-Lactate DehydrogenaseChemistryCaspase 3fungiNeurotoxicityROSTransfectionmedicine.diseaseTriclosanCell biologyGluN2BGluN2AProtein Subunits030104 developmental biologyNeurologyNMDAApoptosisNMDA receptorFemale030217 neurology & neurosurgeryMolecular Neurobiology
researchProduct

Isomer-nonspecific action of dichlorodiphenyltrichloroethane on aryl hydrocarbon receptor and G-protein-coupled receptor 30 intracellular signaling i…

2014

Abstract Extended residual persistence of the pesticide dichlorodiphenyltrichloroethane (DDT) raises concerns about its long-term neurotoxic effects. Little is known, however, about DDT toxicity during the early stages of neural development. This study demonstrated that DDT-induced apoptosis of mouse embryonic neuronal cells is a caspase-9-, caspase-3-, and GSK-3β-dependent process, which involves p,p’ -DDT-specific impairment of classical ERs. It also provided evidence for DDT-isomer-nonspecific alterations of AhR- and GPR30-mediated intracellular signaling, including changes in the levels of the receptor and receptor-regulated mRNAs, and also changes in the protein levels of the receptors…

GPR30Time FactorsGSK-3 betaEstrogen receptorApoptosisStimulationBiochemistryReceptors G-Protein-CoupledGlycogen Synthase Kinase 3MiceEndocrinologyneurotoxicityestrogenReceptorCells CulturedNeuronsbiologyCaspase 3estrogen receptorsCaspase InhibitorsCell biologycaspasesReceptors EstrogenQuinolinesGPERNeural developmentSignal Transductionmedicine.medical_specialtyAryl hydrocarbon receptor nuclear translocatorneuronal cell culturesDDT17-beta-estradiolIsomerismbeta-NaphthoflavoneInternal medicineparasitic diseasesCytochrome P-450 CYP1A1medicineAnimalsBcl-2BenzodioxolesRNA MessengerMolecular BiologyG protein-coupled receptorBenzoflavonesGlycogen Synthase Kinase 3 betaL-Lactate DehydrogenaseAryl hydrocarbon receptorPyrimidinesEndocrinologyReceptors Aryl Hydrocarbonbiology.proteinPyrazolesMolecular and Cellular Endocrinology
researchProduct

Dibutyl Phthalate (DBP)-Induced Apoptosis and Neurotoxicity are Mediated via the Aryl Hydrocarbon Receptor (AhR) but not by Estrogen Receptor Alpha (…

2016

Dibutyl phthalate (di-n-butyl phthalate, DBP) is one of the most commonly used phthalate esters. DBP is widely used as a plasticizer in a variety of household industries and consumer products. Because phthalates are not chemically bound to products, they can easily leak out to enter the environment. DBP can pass through the placental and blood–brain barriers due to its chemical structure, but little is known about its mechanism of action in neuronal cells. This study demonstrated the toxic and apoptotic effects of DBP in mouse neocortical neurons in primary cultures. DBP stimulated caspase-3 and LDH activities as well as ROS formation in a concentration (10 nM–100 µM) and time-dependent (3–…

0301 basic medicineTime Factorsgenetic structuresPPARγPeroxisome proliferator-activated receptorApoptosis010501 environmental sciencesToxicology01 natural sciencesDBPMicechemistry.chemical_compoundERβReceptorCells CulturedERαCerebral CortexNeuronschemistry.chemical_classificationbiologyCaspase 3General NeurosciencePhthalateDibutyl PhthalatePhthalateOriginal ArticleSignal transductioncirculatory and respiratory physiologymedicine.medical_specialtyCell SurvivalDibutyl phthalateNeuroscience(all)03 medical and health sciencesInternal medicinemedicineAnimalsEstrogen Receptor betaRNA Messengercardiovascular diseasesEstrogen receptor beta0105 earth and related environmental sciencesDose-Response Relationship DrugAhREstrogen Receptor alphaNeuronAryl hydrocarbon receptorPPAR gamma030104 developmental biologyEndocrinologyReceptors Aryl Hydrocarbonchemistrybiology.proteinReactive Oxygen SpeciesEstrogen receptor alphaNeurotoxicity Research
researchProduct

PPAR-γ Agonist GW1929 But Not Antagonist GW9662 Reduces TBBPA-Induced Neurotoxicity in Primary Neocortical Cells

2013

Tetrabromobisphenol A (2,2-bis(4-hydroxy-3,5-dibromophenyl)propane; TBBPA) is a widely used brominated flame retardant. TBBPA induces neuronal damage, but the mechanism by which this occurs is largely unknown. We studied the possible involvement of peroxisome proliferator-activated receptor gamma (PPAR-γ) in TBBPA-induced apoptosis and toxicity in mouse primary neuronal cell cultures. TBBPA enhanced both, caspase-3 activity and lactate dehydrogenase (LDH) release in neocortical cells after 6 and 24 h of exposition. These data were supported at the cellular level with Hoechst 33342 staining. Immunoblot analyses showed that, compared with control cells, 10 μM TBBPA decreased the expression of…

PPAR-γTime FactorsNeuroscience(all)Polybrominated BiphenylsPeroxisome proliferator-activated receptorGW1929Caspase 3ApoptosisNeocortexPharmacologyBiologyToxicologyNeuroprotectionBenzophenonesMicemedicineNeurotoxicityAnimalsAnilidesReceptorCells Culturedchemistry.chemical_classificationNeuronsDose-Response Relationship DrugL-Lactate DehydrogenaseCaspase 3General NeuroscienceNeurotoxicityApoptotic bodymedicine.diseasePPAR gammaTBBPANeuroprotective AgentschemistryCell cultureApoptosisTyrosineNeurotoxicity SyndromesOriginal ArticleCentral Nervous System AgentsNeurotoxicity Research
researchProduct

Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons.

2016

Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the in…

0301 basic medicinemedicine.medical_specialtySmall interfering RNAStimulationCaspase 3ApoptosisNeocortex010501 environmental sciencesBiology01 natural sciencesBiochemistry03 medical and health sciencesMiceInternal medicinemedicineCytochrome P-450 CYP1A1Cyp1a1AnimalsRNA MessengerCells Cultured0105 earth and related environmental sciencesGeneral Environmental Sciencechemistry.chemical_classificationNeuronsReactive oxygen speciesCaspase 3fungiAhRNeurotoxicityCyp1b1respiratory systemNeuronmedicine.diseaseAryl hydrocarbon receptorTriclosanCell biology030104 developmental biologyEndocrinologyMechanism of actionchemistryReceptors Aryl HydrocarbonApoptosisCytochrome P-450 CYP1B1biology.proteinAnti-Infective Agents LocalFemalemedicine.symptomReactive Oxygen SpeciesEnvironmental research
researchProduct