0000000000595779
AUTHOR
Jean-marc Fédou
Automata and differentiable words
We exhibit the construction of a deterministic automaton that, given k > 0, recognizes the (regular) language of k-differentiable words. Our approach follows a scheme of Crochemore et al. based on minimal forbidden words. We extend this construction to the case of C\infinity-words, i.e., words differentiable arbitrary many times. We thus obtain an infinite automaton for representing the set of C\infinity-words. We derive a classification of C\infinity-words induced by the structure of the automaton. Then, we introduce a new framework for dealing with \infinity-words, based on a three letter alphabet. This allows us to define a compacted version of the automaton, that we use to prove that ev…
Vertical representation of C∞-words
We present a new framework for dealing with C ∞ -words, based on their left and right frontiers. This allows us to give a compact representation of them, and to describe the set of C ∞ -words through an infinite directed acyclic graph G. This graph is defined by a map acting on the frontiers of C ∞ -words. We show that this map can be defined recursively and with no explicit reference to C ∞ -words. We then show that some important conjectures on C ∞ -words follow from analogous statements on the structure of the graph G.