0000000000595919
AUTHOR
P. Krstic
Energy dependence of inclusive spectra in e+ e- annihilation
Inclusive charged hadron distributions as obtained from the DELPHI measurements at 130, 136, 161, 172 and 183 GeV are presented as a function of the variables rapidity, xi(p), p and transversal momenta. Data are compared with event generators and with MLLA calculations, in order to examine the hypothesis of local parton hadron duality. The differential momentum spectra show an indication for coherence effects in the production of soft particles. The relation between the energy dependence of the charged multiplicity and the rapidity distribution is examined. (C) 1999 Elsevier Science B.V. All rights reserved.
Energy dependence of event shapes and of $\alpha_s$ at LEP 2
Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M-Z with the DELPHI detector at LEP. From the event shapes, the strong coupling alpha(s) is extracted in O(alpha(s)(2)), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M-Z, the energy dependence (running) of alpha(s) is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d alpha(s)(-1)/d log(E-cm) = 1.39 +/- 0.34 (stat) +/- 0.17(syst), in good ag…
Study of the four-jet anomaly observed at LEP centre-of-mass energies of 130 and 136 GeV
The four-jet events collected by DELPHI during the special LEP run at centre-of-mass energies of 130 and 136 GeV in 1997 with an integrated luminosity of 5.9 pb(-1) are analysed. Their rate and the distributions of their di-jet masses, their smallest jet charges, and their di-jet charge separations all agree well with Standard Model predictions. Thus the hypothesis of pair production of a new particle with a sum of di-jet masses around 105 GeV/c(2) is not supported. The combined result of the four LEP collaborations refuting this hypothesis at over 99% confidence level is also given. (C) 1999 Published by Elsevier Science B.V. All rights reserved.