0000000000596295

AUTHOR

Sebastian Dziadek

The (2-phenyl-2-trimethylsilyl)ethyl-(PTMSEL)-linker in the synthesis of glycopeptide partial structures of complex cell surface glycoproteins.

The (2-phenyl-2-trimethylsilyl)ethyl-(PTMSEL) linker represents a novel fluoride-sensitive anchor for the solid-phase synthesis of protected peptides and glycopeptides. Its cleavage is achieved under almost neutral conditions using tetrabutylammonium fluoride trihydrate in dichloromethane thus allowing the construction of complex molecules sensitive to basic and acidic media commonly required for the cleavage of standard linker systems. The advantages of the PTMSEL linker are demonstrated in the synthesis of glycopeptides from the liver intestine (LI)-cadherin and the mucin MUC1, bearing carbohydrate moieties such as N-linked chitobiose or O-linked sialyl-T(N)-residues. The synthesis of the…

research product

Synthetic Glycopeptides for the Development of Antitumor Vaccines.

research product

Synthesis and Structural Model of an α(2,6)-Sialyl-T Glycosylated MUC1 Eicosapeptide under Physiological Conditions

To study the effect of O-glycosylation on the conformational propensities of a peptide backbone, a 20-residue peptide (GSTAPPAHGVTSAPDTRPAP) representing the full length tandem repeat sequence of the human mucin MUC1 and its analogue glycosylated with the (2,6)-sialyl-T antigen on Thr11, were prepared and investigated by NMR and molecular modeling. The peptides contain both the GVTSAP sequence, which is an effective substrate for GalNAc transferases, and the PDTRP fragment, a known epitope recognized by several anti-MUC1 monoclonal antibodies. It has been shown that glycosylation of threonine in the GVTSAP sequence is a prerequisite for subsequent glycosylation of the serine at GVTSAP. Furt…

research product

Synthetic Glycopeptides for the Development of Antitumour Vaccines

Glycoproteins of tumour cells often are aberrantly glycosylated. In its tumour-associated form, the epithelial mucin MUC1 carries short saccharide structures such as TN, T, sialyl-TN, and sialyl-T antigens. Due to the incomplete saccharide components, peptide epitopes of the backbone become accessible to the immune system. For the construction of synthetic antitumour vaccines, glycopeptides have been synthesized which contain tumour-associated saccharide antigens and peptide sequences from the tandem repeat portion of MUC1. In the synthesis of these glycopeptides, preformed glycosyl–amino acid building blocks are applied in solution- or solid-phase strategies. Examples are given for the use…

research product

Synthetische Vakzine aus tumorassoziierten MUC1-Glycopeptid-Antigenen und Rinderserumalbumin

research product

A fully synthetic vaccine consisting of a tumor-associated glycopeptide antigen and a T-cell epitope for the induction of a highly specific humoral immune response.

research product

Synthesis of tumor-associated glycopeptide antigens for the development of tumor-selective vaccines

In contrast to normal cells, the glycoprotein profile on epithelial tumor cells is distinctly altered. Due to an incomplete formation of the glycan side-chains resulting from a premature sialylation, additional peptide epitopes become accessible to the immune system in mucin-type glycoproteins on tumor cells. These tumor-associated structure alterations constitute the basis for a selective immunological attack on cancer cells. For the construction of immunostimulating antigens, glycopeptide partial structures from the mucins MUC1 and MUC4 carrying the tumor-associated sialyl-T(N), alpha2,6-sialyl-T and alpha2,3-sialyl-T antigens have been synthesized. Employing different linkers such as the…

research product

Synthetic Glycopeptides from the Mucin Family as Potential Tools in Cancer Immunotherapy

Compared to glycoproteins of healthy cells, glycoproteins of tumor cells are often aberrantly glycosylated. Thus, glycopeptide fragments of surface glycoproteins of tumor cells are of interest as tumor-associated antigens for the distinction between normal and tumor cells. Cancer immunotherapy directed at selectively targeting these tumor-associated glycoprotein structure alterations--deficient glycosylation and, thus, exposure of peptide epitopes which are masked in normal cells--is considered a promising approach for the treatment of cancer. For this purpose, glycoproteins from the mucin family are of particular interest. Mucins belong to a class of heavily O-glycosylated, high-molecular …

research product

Biomimetic synthesis of the tumor-associated (2,3)-sialyl-T antigen and its incorporation into glycopeptide antigens from the mucins MUC1 and MUC4.

Glycoproteins on epithelial tumor cells often exhibit aberrant glycosylation profiles. The incomplete formation of the glycan side chains resulting from a down-regulated glucosamine transfer and a premature sialylation results in additional peptide epitopes, which become accessible to the immune system in mucin-type glycoproteins. These cancer-specific structure alterations are considered to be a promising basis for selective immunological attack on tumor cells. Among the tumor-associated saccharide antigens, the (2,3)-sialyl-T antigen has been identified as the most abundant glycan, found in several different carcinoma cell lines. According to a linear biomimetic strategy, the (2,3)-sialyl…

research product

Synthetic vaccines consisting of tumor-associated MUC1 glycopeptide antigens and bovine serum albumin.

research product

Eine vollsynthetische Vakzine aus einem tumorassoziierten Glycopeptid-Antigen und einem T-Zell-Epitop zur Induktion einer hochspezifischen humoralen Immunantwort

research product