0000000000596895
AUTHOR
Benedetto Bongiorno
On the first return integrals
Some pathological properties of the first-return integrals are explored. In particular it is proved that there exist Riemann improper integrable functions which are first-return recoverable almost everywhere, but not first-return integrable, with respect to each trajectory. It is also proved that the usual convergence theorems fail to be true for the first-return integrals.
Approximation by step functions of Banach space valued nonabsolute integrals.
The approximation of Banach space valued nonabsolutely integrable functions by step functions is studied. It is proved that a Henstock integrable function can be approximated by a sequence of step functions in the Alexiewicz norm, while a Henstock-Kurzweil-Pettis and a Denjoy-Khintchine-Pettis integrable function can be only scalarly approximate in the Alexiewicz norm by a sequence of step functions. In case of Henstock-Kurzweil-Pettis and Denjoy-Khintchine-Pettis integrals the full approximation can be done if and only if the range of the integral is norm relatively compact. It is also proved that if the target Banach space X does not contain any isomorphic copy of c_0, then the range of t…