Detection of Internet robots using a Bayesian approach
A large part of Web traffic on e-commerce sites is generated not by human users but by Internet robots: search engine crawlers, shopping bots, hacking bots, etc. In practice, not all robots, especially the malicious ones, disclose their identities to a Web server and thus there is a need to develop methods for their detection and identification. This paper proposes the application of a Bayesian approach to robot detection based on characteristics of user sessions. The method is applied to the Web traffic from a real e-commerce site. Results show that the classification model based on the cluster analysis with the Ward's method and the weighted Euclidean metric is very effective in robot det…