0000000000598464

AUTHOR

Laeticia Petit

showing 2 related works from this author

Low temperature afterglow from SrAl 2 O 4 : Eu, Dy, B containing glass

2020

V.V. acknowledges the financial support of ERDF PostDoc project No. 1.1.1.2/VIAA/3/19/440 (University of Latvia Institute of Solid State Physics, Latvia) and LP the Academy of Finland (Flagship Programme, Photonics Research and Innovation PREIN 320165 and Academy Project -326418) for the financial support. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01- 2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART 2 .

Materials sciencePersistent luminescenceCenter of excellence02 engineering and technology114 Physical sciences7. Clean energy01 natural sciences0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]media_common.cataloged_instanceGeneral Materials ScienceEuropean unionmedia_common010302 applied physicsHorizon (archaeology)Mechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnologyCondensed Matter PhysicsEngineering physicsLow temperature applicationsAfterglowPhosphate glassMechanics of Materials216 Materials engineering0210 nano-technology
researchProduct

Core-clad phosphate glass fibers for biosensing

2019

Recently, a phosphate glass with composition 20 CaO-20 SrO-10 Na2O-50 P2O5 (mol%) was found to have good potential as a biomaterial and to possess thermal properties suitable for fiber drawing. This study opened the path towards the development of fully bioresorbable fibers promising for biosensing. In the past, this phosphate glass with CeO2 was found to increase the refractive index and the glass stability. Therefore, a new SrO-containing glass was prepared with 1 mol% of CeO2 and core fibers were drawn from it. A core-clad fiber was also processed, where the core was a Ce-doped glass and the clad undoped, to allow for total internal reflection. The mechanical properties of the core and c…

Materials scienceBioengineeringBiosensing Techniques02 engineering and technology010402 general chemistry01 natural sciencesPhosphatesPhosphate glassBiomaterialschemistry.chemical_compoundUltimate tensile strengthComposite materialPhosphoric acidTotal internal reflectionBiomaterialCerium217 Medical engineering021001 nanoscience & nanotechnologyCladding (fiber optics)0104 chemical scienceschemistryStrontiumMechanics of Materials216 Materials engineeringGlass0210 nano-technologyBiosensorRefractive indexMaterials Science and Engineering: C
researchProduct