Surrogate-assisted multicriteria optimization: Complexities, prospective solutions, and business case
Complexity in solving real-world multicriteria optimization problems often stems from the fact that complex, expensive, and/or time-consuming simulation tools or physical experiments are used to evaluate solutions to a problem. In such settings, it is common to use efficient computational models, often known as surrogates or metamodels, to approximate the outcome (objective or constraint function value) of a simulation or physical experiment. The presence of multiple objective functions poses an additional layer of complexity for surrogate-assisted optimization. For example, complexities may relate to the appropriate selection of metamodels for the individual objective functions, extensive …