0000000000598762

AUTHOR

Johannes Jünemann

The Tensor Networks Anthology: Simulation techniques for many-body quantum lattice systems

We present a compendium of numerical simulation techniques, based on tensor network methods, aiming to address problems of many-body quantum mechanics on a classical computer. The core setting of this anthology are lattice problems in low spatial dimension at finite size, a physical scenario where tensor network methods, both Density Matrix Renormalization Group and beyond, have long proven to be winning strategies. Here we explore in detail the numerical frameworks and methods employed to deal with low-dimension physical setups, from a computational physics perspective. We focus on symmetries and closed-system simulations in arbitrary boundary conditions, while discussing the numerical dat…

research product

Strongly correlated one-dimensional Bose–Fermi quantum mixtures: symmetry and correlations

We consider multi-component quantum mixtures (bosonic, fermionic, or mixed) with strongly repulsive contact interactions in a one-dimensional harmonic trap. In the limit of infinitely strong repulsion and zero temperature, using the class-sum method, we study the symmetries of the spatial wave function of the mixture. We find that the ground state of the system has the most symmetric spatial wave function allowed by the type of mixture. This provides an example of the generalized Lieb-Mattis theorem. Furthermore, we show that the symmetry properties of the mixture are embedded in the large-momentum tails of the momentum distribution, which we evaluate both at infinite repulsion by an exact …

research product

High-momentum tails as magnetic-structure probes for strongly correlatedSU(κ)fermionic mixtures in one-dimensional traps

A universal ${k}^{\ensuremath{-}4}$ decay of the large-momentum tails of the momentum distribution, fixed by Tan's contact coefficients, constitutes a direct signature of strong correlations in a short-range interacting quantum gas. Here we consider a repulsive multicomponent Fermi gas under harmonic confinement, as in the experiment of G. Pagano et al. [Nat. Phys. 10, 198 (2014)], realizing a gas with tunable $\text{SU}(\ensuremath{\kappa})$ symmetry. We exploit an exact solution at infinite repulsion to show a direct correspondence between the value of the Tan's contact for each of the $\ensuremath{\kappa}$ components of the gas and the Young tableaux for the ${S}_{N}$ permutation symmetr…

research product