0000000000598830

AUTHOR

Juan Enacher

Effects of PSA Removal from NCAM on the Critical Period Plasticity Triggered by the Antidepressant Fluoxetine in the Visual Cortex.

Neuronal plasticity peaks during critical periods of postnatal development and is reduced towards adulthood. Recent data suggests that windows of juvenile-like plasticity can be triggered in the adult brain by antidepressant drugs such as Fluoxetine. Although the exact mechanisms of how Fluoxetine promotes such plasticity remains unknown, several studies indicate that inhibitory circuits play an important role. The polysialylated form of the neural cell adhesion molecules (PSA-NCAM) has been suggested to mediate the effects of Fluoxetine and it is expressed in the adult brain by mature interneurons. Moreover, the enzymatic removal of PSA by neuroaminidase-N not only affects the structure of…

research product

Hypocellularity in the murine model for Down Syndrome Ts65Dn is not affected by adult neurogenesis

Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity …

research product

Neurochemical Phenotype of Reelin Immunoreactive Cells in the Piriform Cortex Layer II

Reelin, a glycoprotein expressed by Cajal-Retzius neurons throughout the marginal layer of developing neocortex, has been extensively shown to play an important role during brain development, guiding neuronal migration and detachment from radial glia. During the adult life, however, many studies have associated Reelin expression to enhanced neuronal plasticity. Although its mechanism of action in the adult brain remains mostly unknown, Reelin is expressed mainly by a subset of mature interneurons. Here, we confirm the described phenotype of this subpopulation in the adult neocortex. We show that these mature interneurons, although being in close proximity, lack polysialylated neural cell ad…

research product