0000000000598842
AUTHOR
Gerardo M. Casañola Martín
Prediction of tyrosinase inhibition activity using atom-based bilinear indices.
A set of novel atom-based molecular fingerprints is proposed based on a bilinear map similar to that defined in linear algebra. These molecular descriptors (MDs) are proposed as a new means of molecular parametrization easily calculated from 2D molecular information. The nonstochastic and stochastic molecular indices match molecular structure provided by molecular topology by using the kth nonstochastic and stochastic graph-theoretical electronic-density matrices, M(k) and S(k), respectively. Thus, the kth nonstochastic and stochastic bilinear indices are calculated using M(k) and S(k) as matrix operators of bilinear transformations. Chemical information is coded by using different pair com…
Atom-Based 2D Quadratic Indices in Drug Discovery of Novel Tyrosinase Inhibitors: Results ofIn Silico Studies Supported by Experimental Results
Herein we present results of QSAR studies of tyrosinase inhibitors employing one of the atom-based TOMOCOMD-CARDD (acronym of TOpological MOlecular COMputer Design-Computer Aided “Rational” Drug Design) descriptors, molecular quadratic indices, and Linear Discriminant Analysis (LDA) as pattern recognition method. In this way, a database of 246 organic chemicals, reported as tyrosinase inhibitors having great structural variability, was analyzed and presented as a helpful tool, not only for theoretical chemists but also for other researchers in this area. In total, 12 LDA-based QSAR models were obtained, the first six with the non-stochastic total and local quadratic indices and the six rema…