0000000000598850
AUTHOR
Lee K. Balick
Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview
Abstract. The AHS (Airborne Hyperspectral Scanner) instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral range. The instrument is operated by Instituto Nacional de Técnica Aerospacial (INTA), and it has been involved in several field campaigns since 2004. This paper presents an overview of the work performed with the AHS thermal imagery provided in the framework of the SPARC and SEN2FLEX campaigns, carried out respectively in 2004 and 2005 over an agricultural area in Spain. The data collected in both campaigns allowed for the first time the development and testing of algorithms for …
Thermal remote sensing in the framework of the SEN2FLEX project: field measurements, airborne data and applications
A description of thermal radiometric field measurements carried out in the framework of the European project SENtinel-2 and Fluorescence Experiment (SEN2FLEX) is presented. The field campaign was developed in the region of Barrax (Spain) during June and July 2005. The purpose of the thermal measurements was to retrieve biogeophysical parameters such as land surface emissivity (LSE) and temperature (LST) to validate airborne-based methodologies and to characterize different surfaces. Thermal measurements were carried out using two multiband field radiometers and several broadband field radiometers, pointing at different targets. High-resolution images acquired with the Airborne Hyperspectral…
Accuracy of ASTER Level-2 thermal-infrared Standard Products of an agricultural area in Spain
Abstract The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) collects five-channel thermal-infrared images that are calibrated, corrected for atmospheric effects, and then converted to land surface temperature and emissivity products by the ASTER Temperature/Emissivity Separation (TES) algorithm. TES scales low- and high-contrast surfaces differently, and has been validated over water (low contrast) and rock (high contrast). Performance of TES over agricultural areas, however, has not been evaluated specifically. To address this issue, field measurements of “ground truth” were made over bare soil in addition to green grass, alfalfa and corn, at an agricultural researc…