0000000000599666
AUTHOR
J. Vicente De Julian-ortiz
Modeling anti-allergic natural compounds by molecular topology.
Molecular topology has been applied to the search of QSAR models able to identify the anti-allergic activity of a wide group of heterogeneous compounds. Through the linear discriminant analysis and artificial neural networks, correct classification percentages above 85% for both the training set and the test set have been obtained. After carrying out a virtual screening with a natural product library, about thirty compounds with theoretical anti-allergic activity have been selected. Among them, hesperidin, naringin, salinomycin, sorbitol, curcumol, myricitrin, diosmin and kinetin stand out. Some of these compounds have already been referenced as having anti-allergic activity.
The Prediction of Human Intestinal Absorption Based on the Molecular Structure
Human Intestinal Absorption (HIA) has been modeled many times by using classification models. However, regression models are scarce. Here, Artificial Neural Networks (ANNs) are implemented for this purpose. A dataset of structurally diverse chemicals with their respective experimental HIA were used to design robust, true predictive and widespread applicable ANN models. An input variables pool was made up of structural invariants calculated by using either Dragon or our software Desmol 1. The selection of best variables was performed following three steps using the entire dataset of molecules. Firstly, variables poorly correlated with the experimental data were eliminated. Secondly, input va…