0000000000599682

AUTHOR

M. Buongiorno Nardelli

showing 2 related works from this author

Mixed finite element-tight-binding electromechanical analysis of carbon nanotubes

2004

Electrical transport properties of carbon nanotubes can be dramatically changed by mechanical deformations that alter tube shape and the corresponding positions of the atoms comprising the tube wall. In principle, detailed atomic/electronic calculations can provide both the deformed configuration and the resulting electrical transport behavior of the tube. Here we simplify the process by refining a previously-developed nonlinear structural mechanics finite-element-based procedure for modeling mechanical behavior of carbon nanotubes to account explicitly for tube chirality. A quadrilateral element overlay procedure provides an isotropic finite element model of hexagonal cells within a graphe…

Materials scienceDeformation (mechanics)Structural mechanicsGrapheneIsotropyGeneral Physics and AstronomyCarbon nanotubeMolecular physicsFinite element methodlaw.inventionTight bindingComputational chemistrylawTube (fluid conveyance)Journal of Applied Physics
researchProduct

Simulation of the electromechanical behavior of multiwall carbon nanotubes.

2009

The enormous potential of carbon nanotubes (CNTs) as primary components in electronic devices and NEMS necessitates the understanding and predicting of the effects of mechanical deformation on electron transport in CNTs. In principle, detailed atomic/electronic calculations can provide both the deformed configuration and the resulting electrical transport behavior of the CNT. However, the computational expense of these simulations limits the size of the CNTs that can be studied with this technique, and a direct analysis of CNTs of the dimension used in nanoelectronic devices seems prohibitive at the present. Here a computationally effective mixed finite element (FE)/tight-binding (TB) appro…

Nanoelectromechanical systemsMaterials sciencemechanical deformationGeneral EngineeringGeneral Physics and AstronomyNanotechnologyCarbon nanotubeFinite element methodlaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineCondensed Matter::Materials ScienceTight bindingElectrical transportfinite elementlawtight-bindingGeneral Materials Scienceelectron transportElectronicscarbon nanotubeDeformation (engineering)Reduction (mathematics)ACS nano
researchProduct