Spatial localization of hotspots in Fano-resonant plasmonic oligomers for surface-enhanced coherent anti-Stokes Raman scattering
AbstractRealization of Fano resonance in plasmonic oligomers is often exploited to design efficient plasmonic substrates for surface-enhanced coherent anti-Stokes Raman scattering. Disk-type Fano-resonant plasmonic oligomers are widely used to enhance the Raman signal of the probe material. Generally, hot spots are generated in those oligomers at different spatial locations at different wavelengths and only a few spatially overlapping hot spots at multiple wavelengths can be achieved with oblique incidence of excitation light. In this work, we proposed hexagonal gold nanoparticle based Fano-resonant plasmonic oligomers that can yield higher number of spatially overlapped hot spots compared …
Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers
Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment …