0000000000599803

AUTHOR

Sebastian Jäger

showing 5 related works from this author

Flavor physics in the quark sector

2010

218 páginas, 106 figuras, 89 tablas.-- arXiv:0907.5386v2.-- Report of the CKM workshop, Rome 9-13th Sep. 2008.-- et al.

QuarkParticle physicsKobayashi-Maskawa MatrixMesonField (physics)Rare Kaon DecaysHigh Energy Physics::LatticeFlavourGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix element01 natural sciencesDirect Cp-ViolationStandard ModelTo-Leading OrderHigh Energy Physics - Phenomenology (hep-ph)Chiral Perturbation-Theory/dk/atira/pure/subjectarea/asjc/31000103 physical sciences010306 general physicsFlavorParticle Physics - PhenomenologyPhysics010308 nuclear & particles physics12.15.Hh Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementsHigh Energy Physics::PhenomenologyELEMENTARY PARTICLE PHYSICSFísicahep-ph13.20.Eb Decays of K mesonsQuantum numberLarge Tan-BetaSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Phenomenology13.20.He Decays of bottom mesonsB MESON[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Effective-Field-TheoryCP violationB-Meson DecaysUniversal Extra DimensionsHigh Energy Physics::ExperimentCP VIOLATIONRooted Staggered FermionsCharmed mesons (|C|>0 B=0)
researchProduct

Amyloid Precursor-like Protein 1 Influences Endocytosis and Proteolytic Processing of the Amyloid Precursor Protein

2005

Ectodomain shedding of the amyloid precursor protein (APP) is a key regulatory step in the generation of the Alzheimer disease amyloid beta peptide (Abeta). The molecular mechanisms underlying the control of APP shedding remain little understood but are in part dependent on the low density lipoprotein receptor-related protein (LRP), which is involved in APP endocytosis. Here, we show that the APP homolog APLP1 (amyloid precursor-like protein 1) influences APP shedding. In human embryonic kidney 293 cells expression of APLP1 strongly activated APP shedding by alpha-secretase and slightly reduced beta-secretase cleavage. As revealed by domain deletion analysis, the increase in APP shedding re…

CytoplasmTime FactorsRecombinant Fusion ProteinsAmino Acid MotifsBlotting WesternGenetic VectorsEndocytic cycleCHO CellsTransfectionEndocytosisBiochemistryCell LineAmyloid beta-Protein PrecursorGenes ReporterCricetinaeChlorocebus aethiopsEndopeptidasesmental disordersAmyloid precursor proteinAnimalsAspartic Acid EndopeptidasesHumansImmunoprecipitationAPLP1Molecular BiologyModels GeneticbiologyChemistryHEK 293 cellsP3 peptideCell BiologyEndocytosisProtein Structure TertiaryMicroscopy FluorescenceBiochemistryAlpha secretaseEctodomainCOS Cellsbiology.proteinAmyloid Precursor Protein SecretasesPeptidesGene DeletionPlasmidsJournal of Biological Chemistry
researchProduct

Reassessing the discovery potential of theB→K*ℓ+ℓ−decays in the large-recoil region: SM challenges and BSM opportunities

2016

We critically examine the potential to disentangle the Standard Model (SM) and new physics (NP) in $B\ensuremath{\rightarrow}{K}^{*}{\ensuremath{\mu}}^{+}{\ensuremath{\mu}}^{\ensuremath{-}}$ and $B\ensuremath{\rightarrow}{K}^{*}{e}^{+}{e}^{\ensuremath{-}}$ decays, focusing on (i) the LHCb anomaly, (ii) the search for right-handed currents, and (iii) lepton-universality violation. Restricting ourselves to the large-recoil region, we advocate a parametrization of the hadronic matrix elements that separates model-independent information about nonperturbative QCD from the results of model calculations. We clarify how to estimate corrections to the heavy-quark limit that would generate a right-h…

QuarkQuantum chromodynamicsPhysicsParticle physics010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyHadronObservableType (model theory)01 natural sciencesStandard Model0103 physical sciencesAnomaly (physics)010306 general physicsPhysical Review D
researchProduct

Reassessing the discovery potential of the $B \to K^{*} \ell^+\ell^-$ decays in the large-recoil region: SM challenges and BSM opportunities

2014

We critically examine the potential to disentangle Standard Model (SM) and New Physics (NP) in $B \to K^* \mu^+\mu^-$ and $B\to K^* e^+ e^-$ decays, focusing on $(i)$ the LHCb anomaly, $(ii)$ the search for right-handed currents, and $(iii)$ lepton-universality violation. Restricting ourselves to the large-recoil region, we advocate a parameterisation of the hadronic matrix elements that separates model-independent information about nonperturbative QCD from the results of model calculations. We clarify how to estimate corrections to the heavy-quark limit that would generate a right-handed (virtual) photon in the $b\to s\gamma$ contribution to the decay. We then apply this approach to the di…

High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesHigh Energy Physics::ExperimentHigh Energy Physics - Experiment
researchProduct

α-secretase mediated conversion of the amyloid precursor protein derived membrane stub C99 to C83 limits Aβ generation

2009

The Swedish mutation within the amyloid precursor protein (APP) causes early-onset Alzheimer's disease due to increased cleavage of APP by BACE1. While beta-secretase shedding of Swedish APP (APPswe) largely results from an activity localized in the late secretory pathway, cleavage of wild-type APP occurs mainly in endocytic compartments. However, we show that liberation of Abeta from APPswe is still dependent on functional internalization from the cell surface. Inspite the unchanged overall beta-secretase cleaved soluble APP released from APP(swe) secretion, mutations of the APPswe internalization motif strongly reduced C99 levels and substantially decreased Abeta secretion. We point out t…

medicine.medical_specialtymedia_common.quotation_subjectEndocytic cycleCHO CellsTransfectionBiochemistryAmyloid beta-Protein PrecursorCellular and Molecular NeuroscienceCricetulusCricetinaeInternal medicinemental disordersmedicineAmyloid precursor proteinAnimalsHumansBiotinylationProtein Interaction Domains and MotifsSecretionInternalizationSecretory pathwaymedia_commonAmyloid beta-PeptidesbiologyChemistryP3 peptidePeptide FragmentsCell biologyEndocrinologyGene Expression RegulationAlpha secretaseMutationbiology.proteinAmyloid Precursor Protein SecretasesAmyloid precursor protein secretaseJournal of Neurochemistry
researchProduct