0000000000599845

AUTHOR

Filippo Frontera

showing 6 related works from this author

On the Spectral Evolution of Cygnus X-2 along its Color-Color Diagram

2002

We report on the results of a broad band (0.1-200 keV) spectral study of Cyg X-2 using two BeppoSAX observations taken in 1996 and 1997, respectively, for a total effective on-source time of ~100 ks. The color-color (CD) and hardness-intensity (HID) diagrams show that the source was in the horizontal branch (HB) and normal branch (NB) during the 1996 and 1997 observation, respectively. Five spectra were selected around different positions of the source in the CD/HID, two in the HB and three in the NB. These spectra are fit to a model consisting of a disk blackbody, a Comptonization component, and two Gaussian emission lines at ~1 keV and ~6.6 keV, respectively. The addition of a hard power-…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsColor–color diagramAstrophysicsRadiusHorizontal branchaccretion accretion disks / stars: individual: Cyg X–2 / stars: neutron / X-rays: stars / X-rays: binaries / X-rays: generalAstrophysicsSpectral lineLuminosityNOaccretionSpace and Planetary ScienceOptical depth (astrophysics)accretion disks / stars: individual: Cyg X–2 / stars: neutron / X-rays: stars / X-rays: binaries / X-rays: generalElectron temperatureEmission spectrum
researchProduct

GrailQuest and HERMES: hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam

2021

GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 10-23 for photons in the γ- ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensitivi…

PhysicsCubeSatsGamma-Ray BurstsPhotonGravitational Wave counterparts010308 nuclear & particles physicsGravitational waveSpace timeQuantum gravityAstronomyTriangulation (social science)01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaAll-sky monitorObservatoryX-rays0103 physical sciencesQuantum gravityNano-satellitesTemporal triangulationGamma-ray burstQuantum foam010303 astronomy & astrophysics
researchProduct

The HERMES-Technologic and Scientific Pathfinder

2020

HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites Technologic and Scientific Pathfinder) is a constellation of six 3U nano-satellites hosting simple but innovative X-ray detectors, characterized by a large energy band and excellent temporal resolution, and thus optimized for the monitoring of Cosmic High Energy transients such as Gamma Ray Bursts and the electromagnetic counterparts of Gravitational Wave Events, and for the determination of their positions. The projects are funded by the Italian Ministry of University and Research and by the Italian Space Agency, and by the European Union Horizon 2020 Research and Innovation Program under Grant Agreement No. 821896. HERMES-TP/S…

CubeSatsmedia_common.quotation_subjectCubeSats; Gamma Ray Bursts; Nano-satellites; X-raysFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energyAstrophysics - Instrumentation and MethodsSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesX-raysmedia_common.cataloged_instanceEuropean unionAerospace engineeringNano-satellites010306 general physics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)media_commonConstellationPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)COSMIC cancer databasebusiness.industryGravitational waveModular designPathfinderSkyTemporal resolutionGamma Ray BurstsbusinessAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Scientific simulations and optimization of the XGIS instrument on board THESEUS

2020

The XGIS (X and Gamma Imaging Spectrometer) is one of the three instruments onboard the THESEUS mission (ESA M5, currently in Phase-A). Thanks to its wide field of view and good imaging capabilities, it will efficiently detect and localize gamma-ray bursts and other transients in the 2-150 keV sky, and also provide spectroscopy up to 10 MeV. Its current design has been optimized by means of scientific simulations based on a Monte Carlo model of the instrument coupled to a state-of-the-art description of the populations of long and short GRBs extending to high redshifts. We describe the optimization process that led to the current design of the XGIS, based on two identical units with partial…

SpectrometerComputer sciencebusiness.industryAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectMonte Carlo methodAstrophysics::Instrumentation and Methods for AstrophysicsProcess (computing)FOS: Physical sciencesWide fieldRedshiftOn boardSkyAerospace engineeringAstrophysics - Instrumentation and Methods for AstrophysicsbusinessGamma-ray burstInstrumentation and Methods for Astrophysics (astro-ph.IM)media_commonSpace Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray
researchProduct

JEM–X inflight performance

2003

We summarize the inflight performance of JEM-X, the X-ray monitor on the INTEGRAL mission during the initial ten months of operations. The JEM-X instruments have now been tuned to stable operational conditions. The performance is found to be close to the pre-launch expectations. The ground calibrations and the inflight calibration data permit to determine the instruments characteristics to fully support the scientific data analysis. Reglero Velasco, Victor, Victor.Reglero@uv.es ; Martinez Nuñez, Silvia, Silvia.Martinez@uv.es

PhysicsInstrumentation: detectors; X-rays: general;010308 nuclear & particles physicsDetectors ; X–rays ; JEM-XDetectorsAstronomy and AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]01 natural sciencesSpace and Planetary ScienceJEM-X0103 physical sciencesCalibrationUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia010303 astronomy & astrophysics:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]X–raysRemote sensingAstronomy & Astrophysics
researchProduct

JEM–X: The X-ray monitor aboard INTEGRAL

2003

The JEM-X monitor provides X-ray spectra and imaging with arcminute angular resolution in the 3 to 35 keV band. The good angular resolution and the low energy response of JEM-X plays an important role in the identification of gamma ray sources and in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture instrument consisting of two identical, coaligned telescopes. Each of the detectors has a sensitive area of 500 cm 2 , and views the sky through its own coded aperture mask. The two coded masks are inverted with respect to each other and provides an angular resolution of 3 0 across an eective field of view of about 10 diameter.

PhysicsInstrumentation: detectors; X-rays: general;010504 meteorology & atmospheric sciencesSpectrometerbusiness.industryAstrophysics::High Energy Astrophysical PhenomenaResolution (electron density)Astrophysics::Instrumentation and Methods for AstrophysicsGamma rayAstronomy and AstrophysicsField of viewCosmic rayAstrophysics01 natural sciencesParticle detectorOpticsSpace and Planetary Science0103 physical sciencesAngular resolutionCoded aperturebusiness010303 astronomy & astrophysics0105 earth and related environmental sciencesAstronomy & Astrophysics
researchProduct