Toolbox for Distance Estimation and Cluster Validation on Data With Missing Values
Missing data are unavoidable in the real-world application of unsupervised machine learning, and their nonoptimal processing may decrease the quality of data-driven models. Imputation is a common remedy for missing values, but directly estimating expected distances have also emerged. Because treatment of missing values is rarely considered in clustering related tasks and distance metrics have a central role both in clustering and cluster validation, we developed a new toolbox that provides a wide range of algorithms for data preprocessing, distance estimation, clustering, and cluster validation in the presence of missing values. All these are core elements in any comprehensive cluster analy…