0000000000600158

AUTHOR

P. Rymaszewski

showing 3 related works from this author

Update on the TowerJazz CMOS DMAPS development for the ATLAS ITk

2019

The upgrade of the ATLAS tracking detector for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. For the de- velopment of depleted CMOS sensors for ATLAS we combined small electrodes with minimal capacitance and advanced processing for fully depleted active sensor volume to achieve radiation hard CMOS sensors in line with ATLAS ITk specifications. Based on initial studies on the prototype sensor “TowerJazz Investigator” we have now developed, produced and tested a first full-size depleted CMOS sensor based on the 180nm TowerJazz imag- ing process, the so-called “MALTA” sensor. The sensor combines special low-noise…

CMOS sensorLarge Hadron Colliderbusiness.industryComputer sciencePhysics::Instrumentation and DetectorsDetectorElectronic detector readout concepts (solid-state) ; Front-end electronics for detector readout ; Particle tracking detectors ; Radiation-hard detectorsChipCapacitancemedicine.anatomical_structureUpgradeCMOSAtlas (anatomy)medicineComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSDetectors and Experimental TechniquesbusinessComputer hardware
researchProduct

Design of large scale sensors in 180 nm CMOS process modified for radiation tolerance

2019

International audience; The last couple of years have seen the development of Depleted Monolithic Active Pixel Sensors (DMAPS) fabricated with a process modification to increase the radiation tolerance. Two large scale prototypes, Monopix with a column drain synchronous readout, and MALTA with a novel asynchronous architecture, have been fully tested and characterized both in the laboratory and in test beams. This showed that certain aspects have to be improved such as charge collection after irradiation and the output data rate. Some improvements resulting from extensive TCAD simulations were verified on a small test chip, Mini-MALTA. A detailed cluster analysis, using data from laboratory…

Nuclear and High Energy PhysicsOn-chip clusteringPhysics::Instrumentation and Detectors01 natural sciencesCMOS sensors ; Tracking detectors ; Monolithic sensors ; MAPS ; On-chip clustering030218 nuclear medicine & medical imaging03 medical and health sciencesTracking detectors0302 clinical medicinesemiconductor detector: pixelRadiation toleranceCMOS sensors0103 physical sciencesMAPSElectronic engineeringIrradiation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]numerical calculationsInstrumentationradiation: damagePhysicsPixelirradiation010308 nuclear & particles physicstracking detector: upgradecharge: yieldBandwidth (signal processing)ATLASDigital architectureChipUpgradeAsynchronous communicationMonolithic sensors
researchProduct

MALTA: a CMOS pixel sensor with asynchronous readout for the ATLAS High-Luminosity upgrade

2018

Radiation hard silicon sensors are required for the upgrade of the ATLAS tracking detector for the High- Luminosity Large Hadron Collider (HL-LHC) at CERN. A process modification in a standard 0.18 μm CMOS imaging technology combines small, low-capacitance electrodes (∼2 fF for the sensor) with a fully depleted active sensor volume. This results in a radiation hardness promising to meet the requirements of the ATLAS ITk outer pixel layers (1.5 × 1015 neq /cm2 ), and allows to achieve a high signal-to-noise ratio and fast signal response, as required by the HL-LHC 25 ns bunch crossing structure. The radiation hardness of the charge collection to Non-Ionizing Energy Loss (NIEL) has been previ…

PhysicsActive pixel sensors ; CMOS integrated circuits ; position sensitive particle detectors ; radiation effects ; radiation hardening (electronics) ; semiconductor detectors ; solid state circuit designPixelPhysics::Instrumentation and Detectors010308 nuclear & particles physicsbusiness.industryDetectorHigh Luminosity Large Hadron Collider01 natural sciencesCapacitance030218 nuclear medicine & medical imagingSemiconductor detector03 medical and health sciences0302 clinical medicineCMOSNuclear electronics0103 physical sciencesbusinessRadiation hardeningComputer hardware
researchProduct