0000000000600210

AUTHOR

Anna Lytova

On the empirical spectral distribution for certain models related to sample covariance matrices with different correlations

Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see t…

research product

On delocalization of eigenvectors of random non-Hermitian matrices

We study delocalization of null vectors and eigenvectors of random matrices with i.i.d entries. Let $A$ be an $n\times n$ random matrix with i.i.d real subgaussian entries of zero mean and unit variance. We show that with probability at least $1-e^{-\log^{2} n}$ $$ \min\limits_{I\subset[n],\,|I|= m}\|{\bf v}_I\| \geq \frac{m^{3/2}}{n^{3/2}\log^Cn}\|{\bf v}\| $$ for any real eigenvector ${\bf v}$ and any $m\in[\log^C n,n]$, where ${\bf v}_I$ denotes the restriction of ${\bf v}$ to $I$. Further, when the entries of $A$ are complex, with i.i.d real and imaginary parts, we show that with probability at least $1-e^{-\log^{2} n}$ all eigenvectors of $A$ are delocalized in the sense that $$ \min\l…

research product

The central limit theorem for linear eigenvalue statistics of the sum of independent random matrices of rank one

International audience

research product

Circular law for sparse random regular digraphs

Fix a constant $C\geq 1$ and let $d=d(n)$ satisfy $d\leq \ln^{C} n$ for every large integer $n$. Denote by $A_n$ the adjacency matrix of a uniform random directed $d$-regular graph on $n$ vertices. We show that, as long as $d\to\infty$ with $n$, the empirical spectral distribution of appropriately rescaled matrix $A_n$ converges weakly in probability to the circular law. This result, together with an earlier work of Cook, completely settles the problem of weak convergence of the empirical distribution in directed $d$-regular setting with the degree tending to infinity. As a crucial element of our proof, we develop a technique of bounding intermediate singular values of $A_n$ based on studyi…

research product

Adjacency matrices of random digraphs: singularity and anti-concentration

Let ${\mathcal D}_{n,d}$ be the set of all $d$-regular directed graphs on $n$ vertices. Let $G$ be a graph chosen uniformly at random from ${\mathcal D}_{n,d}$ and $M$ be its adjacency matrix. We show that $M$ is invertible with probability at least $1-C\ln^{3} d/\sqrt{d}$ for $C\leq d\leq cn/\ln^2 n$, where $c, C$ are positive absolute constants. To this end, we establish a few properties of $d$-regular directed graphs. One of them, a Littlewood-Offord type anti-concentration property, is of independent interest. Let $J$ be a subset of vertices of $G$ with $|J|\approx n/d$. Let $\delta_i$ be the indicator of the event that the vertex $i$ is connected to $J$ and define $\delta = (\delta_1, …

research product

The smallest singular value of a shifted $d$-regular random square matrix

We derive a lower bound on the smallest singular value of a random d-regular matrix, that is, the adjacency matrix of a random d-regular directed graph. Specifically, let $$C_1<d< c n/\log ^2 n$$ and let $$\mathcal {M}_{n,d}$$ be the set of all $$n\times n$$ square matrices with 0 / 1 entries, such that each row and each column of every matrix in $$\mathcal {M}_{n,d}$$ has exactly d ones. Let M be a random matrix uniformly distributed on $$\mathcal {M}_{n,d}$$ . Then the smallest singular value $$s_{n} (M)$$ of M is greater than $$n^{-6}$$ with probability at least $$1-C_2\log ^2 d/\sqrt{d}$$ , where c, $$C_1$$ , and $$C_2$$ are absolute positive constants independent of any other parameter…

research product

Structure of eigenvectors of random regular digraphs

Let $d$ and $n$ be integers satisfying $C\leq d\leq \exp(c\sqrt{\ln n})$ for some universal constants $c, C&gt;0$, and let $z\in \mathbb{C}$. Denote by $M$ the adjacency matrix of a random $d$-regular directed graph on $n$ vertices. In this paper, we study the structure of the kernel of submatrices of $M-z\,{\rm Id}$, formed by removing a subset of rows. We show that with large probability the kernel consists of two non-intersecting types of vectors, which we call very steep and gradual with many levels. As a corollary, we show, in particular, that every eigenvector of $M$, except for constant multiples of $(1,1,\dots,1)$, possesses a weak delocalization property: its level sets have cardin…

research product

Central Limit Theorem for Linear Eigenvalue Statistics for a Tensor Product Version of Sample Covariance Matrices

For $$k,m,n\in {\mathbb {N}}$$ , we consider $$n^k\times n^k$$ random matrices of the form $$\begin{aligned} {\mathcal {M}}_{n,m,k}({\mathbf {y}})=\sum _{\alpha =1}^m\tau _\alpha {Y_\alpha }Y_\alpha ^T,\quad {Y}_\alpha ={\mathbf {y}}_\alpha ^{(1)}\otimes \cdots \otimes {\mathbf {y}}_\alpha ^{(k)}, \end{aligned}$$ where $$\tau _{\alpha }$$ , $$\alpha \in [m]$$ , are real numbers and $${\mathbf {y}}_\alpha ^{(j)}$$ , $$\alpha \in [m]$$ , $$j\in [k]$$ , are i.i.d. copies of a normalized isotropic random vector $${\mathbf {y}}\in {\mathbb {R}}^n$$ . For every fixed $$k\ge 1$$ , if the Normalized Counting Measures of $$\{\tau _{\alpha }\}_{\alpha }$$ converge weakly as $$m,n\rightarrow \infty $$…

research product

Anti-concentration property for random digraphs and invertibility of their adjacency matrices

Let Dn,dDn,d be the set of all directed d-regular graphs on n vertices. Let G be a graph chosen uniformly at random from Dn,dDn,d and M be its adjacency matrix. We show that M is invertible with probability at least View the MathML source1−Cln3⁡d/d for C≤d≤cn/ln2⁡nC≤d≤cn/ln2⁡n, where c,Cc,C are positive absolute constants. To this end, we establish a few properties of directed d-regular graphs. One of them, a Littlewood–Offord-type anti-concentration property, is of independent interest: let J be a subset of vertices of G with |J|≤cn/d|J|≤cn/d. Let δiδi be the indicator of the event that the vertex i is connected to J and δ=(δ1,δ2,…,δn)∈{0,1}nδ=(δ1,δ2,…,δn)∈{0,1}n. Then δ is not concentrate…

research product

The rank of random regular digraphs of constant degree

Abstract Let d be a (large) integer. Given n ≥ 2 d , let A n be the adjacency matrix of a random directed d -regular graph on n vertices, with the uniform distribution. We show that the rank of A n is at least n − 1 with probability going to one as n grows to infinity. The proof combines the well known method of simple switchings and a recent result of the authors on delocalization of eigenvectors of A n .

research product