0000000000601268

AUTHOR

Pauline Chatelain

showing 9 related works from this author

Characterisation of NO synthases from the alga Klebsormidium nitens

2022

Nitric oxide (NO) is an important cellular signaling molecule regulating various physiological processes, in both animals and plants. In animals, NO synthesis is mainly catalyzed by NO synthase (NOS) enzymes. In plants, NOS-like activities sensitive to mammalian NOS inhibitors have been measured, although no sequences encoding mammalian NOS have been found in land plants. Interestingly, we identified NOS-like sequences in about twenty algae species. These latter include the filamentous Charophyta green algae Klebsormidium nitens, a biological model to study the early transition step from aquatic algae to land plants. Currently, two NOS were identified in K. nitens genome: i) KnNOS1 which po…

algaeabiotic stressmonoxyde d'azoteheterologous productioninteraction protéine-protéinenosinteractions biotiques[SDV] Life Sciences [q-bio]stressalgueNO Synthaseproduction hétérologuenitric Oxideprotein-protein
researchProduct

Etude du rôle de la protéine Cell Division Cycle 48 (Cdc48) dans le système ubiquitine-protéasome (UPS) lors de la réponse immunitaire des plantes

2019

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]
researchProduct

Role of nitric oxide synthase (NOS) of Klebsormidium nitens: Identification and characterization of partners

2021

National audience; Nitric oxide (NO) is an important cellular signaling molecule across kingdoms. During bioticor abiotic stresses, NO burst is detected in both plants and mammals although no sequenceencoding the well described mammalian NO synthase (NOS) is highlighted in plants. Comparedto terrestrial plants, some algae present transcripts encoding the NOS-like enzyme. Amongthem, Klebsormidium nitens the model alga to study the early transition step from aquatic algaeto land plants is found. As mechanisms governing NO synthesis and signaling in green lineageremain unclear, the study of NOS from K. nitens (KnNOS) through (i) the identification ofregulator proteins, (ii) the identification …

algae[SDV] Life Sciences [q-bio]abiotic stressnitric oxide synthase[SDV]Life Sciences [q-bio]reference genequantitative real-time PCRNOS algae
researchProduct

Role of nitric oxide synthases from Klebsormidium nitens: structural characterization and identification of protein partners

2022

Nitric oxide (NO) is an important cellular signalling molecule regulating various physiological processes, in both animals andplants. In animals, NO synthesis is mainly catalysed by NO synthase (NOS) enzymes. During biotic or abiotic stresses, NOSlike activities that are sensitive to mammalian NOS inhibitors have been detected in plants, although no sequences encodingthe well described mammalian NOS are highlighted in land plants. Interestingly, we identified NOS-like sequences in 20 algaespecies. Among them, NOSs are found in Klebsormidium nitens the model alga to study the early transition step from aquaticalgae to land plants.As mechanisms governing NO synthesis and signalling in green l…

algae[SDV] Life Sciences [q-bio]western blotnitric oxidenitric oxide synthaseRT-qPCRinteractome
researchProduct

Identification of Partner Proteins of the Algae Klebsormidium nitens NO Synthases: Toward a Better Understanding of NO Signaling in Eukaryotic Photos…

2021

In animals, NO is synthesized from L-arginine by three isoforms of nitric oxide synthase (NOS) enzyme. NO production and effects have also been reported in plants but the identification of its sources, especially the enzymatic ones, remains one of the critical issues in the field. NOS-like activities have been reported, although there are no homologs of mammalian NOS in the land plant genomes sequenced so far. However, several NOS homologs have been found in algal genomes and transcriptomes. A first study has characterized a functional NOS in the chlorophyte Ostreococcus tauri and the presence of NOS homologs was later confirmed in a dozen algae. These results raise the questions of the sig…

algaenitric oxide synthaseHypothesis and Theoryprotein partnersPlant cultureinteractomePlant ScienceNO signalingSB1-1110Frontiers in Plant Science
researchProduct

The chaperone-like protein Cdc48 regulates ubiquitin-proteasome system in plants.

2021

The degradation of misfolded proteins is mainly mediated by the ubiquitin-proteasome system (UPS). UPS can be assisted by the protein Cdc48 but the relationship between UPS and Cdc48 in plants has been poorly investigated. Here, we analyzed the regulation of UPS by Cdc48 in tobacco thanks to two independent cell lines overexpressing Cdc48 constitutively and plant leaves overexpressing Cdc48 transiently. In the cell lines, the accumulation of ubiquitinated proteins was affected both quantitatively and qualitatively and the amount of proteasomal subunits was modified, while proteolytic activities were unchanged. Similarly, the over-expression of Cdc48 in planta impacted the accumulation of ub…

0106 biological sciences0301 basic medicineHypersensitive responseProgrammed cell deathProteasome Endopeptidase ComplexPhysiologyProtein subunitubiquitinomePlant Science01 natural sciencescryptogeinCdc48Fungal Proteins03 medical and health sciences[CHIM.ANAL]Chemical Sciences/Analytical chemistryValosin Containing ProteinTobacco[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPlant ImmunityPlant ProteinsbiologyChemistryUbiquitinUbiquitin homeostasisPlants Genetically ModifiedUbiquitinated ProteinsElicitorCell biology030104 developmental biologyproteasomeProteasomeCell cultureChaperone (protein)biology.protein010606 plant biology & botanyPlant, cellenvironmentREFERENCES
researchProduct

Role of nitric oxide synthases from klebsormidium nitens: first structural characterization and partners identification

2022

Objectives: Nitric oxide (NO) is an important cellular signaling molecule regulating various physiologicalprocesses, in both animals and plants. In animals, NO synthesis is mainly catalyzed by NO synthase(NOS) enzymes. In plants, NOS-like activities sensitive to mammalian NOS inhibitors have beenmeasured, although no sequences encoding mammalian NOSs have been found in land plants.Interestingly, we identified NOS-like sequences in 20 algae species. These latter include thefilamentous charophyte green algae Klebsormidium nitens, a biological model to study the earlytransition step from aquatic algae to land plants. In order to understand the mechanisms governingNO synthesis and signaling in …

algae[SDV] Life Sciences [q-bio]nitric oxidenitric oxide synthaseinteractome
researchProduct

Nitric oxide production and signalling in algae

2021

International audience

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]ComputingMilieux_MISCELLANEOUS
researchProduct

The chaperone-like protein Cdc48 regulates ubiquitin-proteasome system in plants

2021

Cdc48[SDV] Life Sciences [q-bio]ubiquitinprotéasome
researchProduct