0000000000602827

AUTHOR

C.p. De Los Heros

showing 7 related works from this author

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006)

2008

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006) Weihai, China - August 15-22

PhysicsNuclear and High Energy PhysicsHigh energyCosmic rayAstrophysicsChinaAtomic and Molecular Physics and OpticsNuclear Physics B - Proceedings Supplements
researchProduct

Optical properties of deep glacial ice at the South Pole

2006

We have remotely mapped optical scattering and absorption in glacial ice at the South Pole for wavelengths between 313 and 560 nm and depths between 1100 and 2350 m. We used pulsed and continuous light sources embedded with the AMANDA neutrino telescope, an array of more than six hundred photomultiplier tubes buried deep in the ice. At depths greater than 1300 m, both the scattering coefficient and absorptivity follow vertical variations in concentration of dust impurities, which are seen in ice cores from other Antarctic sites and which track climatological changes. The scattering coefficient varies by a factor of seven, and absorptivity (for wavelengths less than ∼450 nm) varies by a fact…

Atmospheric ScienceSoil ScienceMineralogyAquatic ScienceOceanographyLight scatteringPhysics::GeophysicsIce coreGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Absorption (electromagnetic radiation)Physics::Atmospheric and Oceanic PhysicsEarth-Surface ProcessesWater Science and Technologygeographygeography.geographical_feature_categoryEcologyScatteringPaleontologyForestryGlacierMolar absorptivityWavelengthGeophysicsSpace and Planetary ScienceAttenuation coefficientAstrophysics::Earth and Planetary AstrophysicsGeologyJournal of Geophysical Research
researchProduct

The IceCube prototype string in Amanda

2006

The Antarctic Muon And Neutrino Detector Array (Amanda) is a high-energy neutrino telescope. It is a lattice of optical modules (OM) installed in the clear ice below the South Pole Station. Each OM contains a photomultiplier tube (PMT) that detects photons of Cherenkov light generated in the ice by muons and electrons. IceCube is a cubic-kilometer-sized expansion of Amanda currently being built at the South Pole. In IceCube the PMT signals are digitized already in the optical modules and transmitted to the surface. A prototype string of 41 OMs equipped with this new all-digital technology was deployed in the Amanda array in the year 2000. In this paper we describe the technology and demonst…

Antarctic Muon And Neutrino Detector ArrayAstroparticle physicsPhysicsNuclear and High Energy PhysicsPhotomultiplierPhotonMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Neutrino telescopeAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomyAstrophysicsNeutrino telescopeAmandaIceCubeData acquisitionSignal digitizationAmanda; IceCube; Neutrino telescope; Signal digitizationInstrumentationCherenkov radiation
researchProduct

A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory

2021

Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction …

FOS: Computer and information sciencesComputer Science - Machine LearningAstrophysics::High Energy Astrophysical Phenomenacs.LGData analysisFOS: Physical sciencesFitting methods01 natural sciencesConvolutional neural networkCalibration; Cluster finding; Data analysis; Fitting methods; Neutrino detectors; Pattern recognitionHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryMachine Learning (cs.LG)High Energy Physics - Experiment (hep-ex)Pattern recognition0103 physical sciencesNeutrino detectors010303 astronomy & astrophysicsInstrumentationMathematical Physics010308 nuclear & particles physicsbusiness.industryhep-exDeep learningCluster findingDetectorNeutrino detectorComputer engineeringOrders of magnitude (time)13. Climate actionCascadeCalibrationPattern recognition (psychology)Artificial intelligencebusiness
researchProduct

Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II

2007

A search for TeV - PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E^{2}\Phi_{90% C.L.} < 7.4 x 10^{-8} GeV cm^{-2} s^{-1} sr^{-1} is placed on the diffuse flux of muon neutrinos with a \Phi \propto E^{-2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive…

Astroparticle physicsPhysicsNuclear and High Energy PhysicsRange (particle radiation)MuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesFluxCosmic rayAstrophysicsAstrophysicsSpectral lineAstronomiaNeutron detectionddc:530High Energy Physics::ExperimentNeutrino
researchProduct

Results from the AMANDA neutrino telescope

2004

The Amanda neutrino telescope at the South Pole has been taking data since 1996. Stepwise upgraded, it reached its final stage in January 2000. We present results from the search for extraterrestrial neutrinos, neutrinos from dark matter annihilation and magnetic monopoles.

PhysicsNuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoHigh Energy Physics::PhenomenologyDark matterAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSolar neutrino problemAtomic and Molecular Physics and Opticslaw.inventionTelescopeNeutrino detectorlawMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoNuclear Physics B - Proceedings Supplements
researchProduct

Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector

2005

A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.

Astroparticle physicsPhysicsParticle physicsRange (particle radiation)AMANDAMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDetectorDark matterHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)NeutralinoFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAMANDA; Dark matter; Neutralino; Neutrino telescopesNuclear physicsNeutrino detectorNeutralinoMuon fluxDark matterHigh Energy Physics::ExperimentNeutrino telescopes
researchProduct