0000000000602960
AUTHOR
A. S. Fomichev
Structure of exotic 7He and 9He
The heavy helium isotopes 7,9 He were studied via their isobaric analog states (IAS) in 7,9 Li. The IAS were populated via resonance reactions of protons with radioactive beams of 6,8 He. The isospin-conserving neutron decay of T=3/2 resonances in 7 Li and proton decay of T=5/2 resonances in 9 Li were measured. New spectroscopic information on these states were obtained, and compared with the properties of levels in 7,9 He.
T=5/2states in9Li:Isobaric analog states of9He
The thick target inverse kinematic method was applied to the study of isobaric analog states in the neutron-rich nucleus ${}^{9}\mathrm{Li}.$ For this purpose, an excitation function for ${}^{8}\mathrm{He}+p$ elastic scattering was measured in the center-of-momentum energy range from 1.6 to 5.8 MeV. Three $T=5/2$ states in ${}^{9}\mathrm{Li}$ (isobaric analogs of ${}^{9}\mathrm{He})$ were observed. Restrictions on the spin-parity assignments are provided according to R-matrix calculations, and conclusions regarding the structure of ${}^{9}\mathrm{He}$ are given.
The electronion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) - A conceptual design study
The electronion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. © 2011 Elsevier B.V. All rights reserved.
Lifetime of 26S and a limit for its 2p decay energy
Unknown isotope 26S, expected to decay by two-proton (2p) emission, was studied theoretically and was searched experimentally. The structure of this nucleus was examined within the relativistic mean field (RMF) approach. A method for taking into account the many-body structure in the three-body decay calculations was developed. The results of the RMF calculations were used as an input for the three-cluster decay model worked out to study a possible 2p decay branch of this nucleus. The experimental search for 26S was performed in fragmentation reactions of a 50.3 A MeV 32S beam. No events of 26S or 25P (a presumably proton-unstable subsystem of 26S) were observed. Based on the obtained produ…
Isobaric analog states as a tool for spectroscopy of exotic nuclei
Abstract Spectroscopy of neutron rich exotic isotopes via their isobaric analog states (IAS) in less exotic nuclei is discussed. Several different experimental techniques, which can be applied to search for IAS of exotic isotopes, are described. Successful application of these techniques to the studies of heavy helium isotopes 7 He and 9 He led to the observation of unknown IAS in 7 Li and 9 Li. Spectroscopic information for these states were obtained, and implication of these findings to the structure of 7,9 He is considered.
Experimental program of the Super-FRS Collaboration at FAIR and developments of related instrumentation
The physics program at the super-conducting fragment separator (Super-FRS) at FAIR, being operated in a multiple-stage, high-resolution spectrometer mode, is discussed. The Super-FRS will produce, separate and transport radioactive beams at high energies up to 1.5 AGeV, and it can be also used as a stand-alone experimental device together with ancillary detectors. Various combinations of the magnetic sections of the Super-FRS can be operated in dispersive, achromatic or dispersion-matched spectrometer ion-optical modes, which allow measurements of momentum distributions of secondary-reaction products with high resolution and precision. A number of unique experiments in atomic, nuclear and h…
Mass measurements of As, Se, and Br nuclei, and their implication on the proton-neutron interaction strength toward the N=Z line
Mass measurements of the $^{69}$As, $^{70,71}$Se and $^{71}$Br isotopes, produced via fragmentation of a $^{124}$Xe primary beam at the FRS at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1,000,000. For the $^{69}$As isotope, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only 10 events. For the $^{70}$Se isotope, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of $\delta$m/m = 4.0$\times 10^{-8}$, with less than 500 events. The masses of the $^{71}$Se and $^{71}$Br isotopes were measured…