0000000000603258
AUTHOR
Sabrina Aouaouda
Robust fault tolerant tracking controller design for vehicle dynamics: A descriptor approach
Abstract In this paper, an active Fault Tolerant Tracking Controller (FTTC) scheme dedicated to vehicle dynamics system is proposed. To address the challenging problem, an uncertain dynamic model of the vehicle is firstly developed, by considering the lateral forces nonlinearities as a Takagi–Sugeno (TS) representation, the sideslip angle as unmeasurable premise variables and the road bank angle as an unknown input. Subsequently, the vehicle dynamic states with the sensor faults are jointly estimated by a descriptor observer on the basis of the roll rate and the steering angle measures. Then a fault tolerant tracking controller is synthesized and solutions are proposed in terms of Linear Ma…
Discrete-timeH − ∕ H ∞ sensor fault detection observer design for nonlinear systems with parameter uncertainty
SUMMARY This work concerns robust sensor fault detection observer (SFDO) design for uncertain and disturbed discrete-time Takagi–Sugeno (T–S) systems using H − ∕ H ∞ criterion. The principle of the proposed approach is based on simultaneously minimizing the perturbation effect and maximizing the fault effect on the residual vector. Furthermore, by introducing slack decision matrices and taking advantage of the descriptor formulation, less conservative sufficient conditions are proposed leading to easier linear matrix inequalities (LMIs). Moreover, the proposed (SFDO) design conditions allow dealing with unmeasurable premise variables. Finally, a numerical example and a truck–trailer system…
Robust fault tolerant tracking controller design for a VTOL aircraft
This paper deals with the fault tolerant control (FTC) design for a Vertical Takeoff and Landing (VTOL) aircraft subject to external disturbances and actuator faults. The aim is to synthesize a fault tolerant controller ensuring trajectory tracking for the nonlinear uncertain system represented by a Takagi-Sugeno (T-S) model. In order to design the FTC law, a proportional integral observer (PIO) is adopted which estimate both of the faults and the faulty system states. Based on the Lyapunov theory and ℓ2 optimization, the trajectory tracking performance and the stability of the closed loop system are analyzed. Sufficient conditions are obtained in terms of linear matrix inequalities (LMI). …