Computational discovery of novel trypanosomicidal drug-like chemicals by using bond-based non-stochastic and stochastic quadratic maps and linear discriminant analysis.
Herein we present results of a quantitative structure-activity relationship (QSAR) studies to classify and design, in a rational way, new antitrypanosomal compounds by using non-stochastic and stochastic bond-based quadratic indices. A data set of 440 organic chemicals, 143 with antitrypanosomal activity and 297 having other clinical uses, is used to develop QSAR models based on linear discriminant analysis (LDA). Non-stochastic model correctly classifies more than 93% and 95% of chemicals in both training and external prediction groups, respectively. On the other hand, the stochastic model shows an accuracy of about the 87% for both series. As an experiment of virtual lead generation, the …