0000000000605383

AUTHOR

N.n. Sedov

Peculiarities of imaging one- and two-dimensional structures using an electron microscope in the mirror operation mode.

Measurements performed in an electron microscope with the mirror operation mode are most sensitive to local electric fields and geometrical roughness of any kind of the object being studied. The object with a geometrical relief is equivalent to a smooth surface with an effective distribution of microfields. Electrons forming the image interact with the local microfields for an extended time: during approach to the object, deceleration and acceleration away from the object. As a result, the electron trajectories can be strongly distorted, and the contrast changes essentially, leading to image deformation of details of the object under investigation and to lowering of the resolution. These ef…

research product

Measurement of magnetic fields and domain structures using a photoemission electron microscope

Publisher Summary This chapter describes the theory and experiments on study of the domain structure of ferromagnets using various operation modes of a photoemission electron microscope (PEEM). The technique of PEEM allows observation of the domain boundaries on ferromagnetic surfaces arising from magnetic stray fields at definite conditions. In most cases, a very weak contrast due to the Lorentz force is formed. It can be measured by the use of digital methods of signal registration and data processing. From the form of the observed signal, conclusions about the shape of the stray field of the domain boundary can be drawn if there is additional information. The calculation of the image con…

research product

Peculiarities of imaging one- and two-dimensional structures in an emission electron microscope. 1. theory

Local changes in work function cause deviations of the electrical microfield near a sample surface as a result of the uniform accelerating field distribution between the sample (cathode) and the extractor electrode (anode). This results in a change in the electron trajectories. As a consequence, the microscope image shows remarkable changes in position, size, intensity and lateral resolution of distinct details, which can be quantitatively described by the calculations presented here. Analysing these effects in the image gives an opportunity to determine the real lateral size of the observed structures and the distribution of local contact potentials.

research product