0000000000605575

AUTHOR

Boris Dubrovin

On critical behaviour in generalized Kadomtsev-Petviashvili equations

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

research product

On critical behaviour in systems of Hamiltonian partial differential equations

Abstract We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P $$_I$$ I ) equation or its fourth-order analogue P $$_I^2$$ I 2 . As concrete examples, we discuss nonlinear Schrödinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture.

research product

On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the Tritronquée solution to the Painlevé-I equation

We argue that the critical behavior near the point of “gradient catastrophe” of the solution to the Cauchy problem for the focusing nonlinear Schrodinger equation \(i\epsilon \varPsi _{t}+\frac{\epsilon^{2}}{2}\varPsi _{xx}+|\varPsi |^{2}\varPsi =0\) , e ≪1, with analytic initial data of the form \(\varPsi (x,0;\epsilon)=A(x)e^{\frac{i}{\epsilon}S(x)}\) is approximately described by a particular solution to the Painleve-I equation.

research product