0000000000605686

AUTHOR

Ashutosh Rai

Two-Qubit Pure Entanglement as Optimal Social Welfare Resource in Bayesian Game

Entanglement is of paramount importance in quantum information theory. Its supremacy over classical correlations has been demonstrated in numerous information theoretic protocols. Here we study possible adequacy of quantum entanglement in Bayesian game theory, particularly in social welfare solution (SWS), a strategy which the players follow to maximize the sum of their payoffs. Given a multi-partite quantum state as an advice, players can come up with several correlated strategies by performing local measurements on their parts of the quantum state. A quantum strategy is called quantum-SWS if it is advantageous over a classical equilibrium (CE) strategy in the sense that none of the player…

research product

Optimal Classical Random Access Codes Using Single d-level Systems

Recently, in the letter [Phys. Rev. Lett. {\bf 114}, 170502 (2015)], Tavakoli et al. derived interesting results by studying classical and quantum random access codes (RACs) in which the parties communicate higher-dimensional systems. They construct quantum RACs with a bigger advantage over classical RACs compared to previously considered RACs with binary alphabet. However, these results crucially hinge upon an unproven assertion that the classical strategy "majority-encoding-identity-decoding" leads to the maximum average success probability achievable for classical RACs; in this article we provide a proof of this intuition. We characterize all optimal classical RACs and show that indeed "…

research product

Strong supremacy of quantum systems as communication resource

We investigate the task of $d$-level random access codes ($d$-RACs) and consider the possibility of encoding classical strings of $d$-level symbols (dits) into a quantum system of dimension $d'$ strictly less than $d$. We show that the average success probability of recovering one (randomly chosen) dit from the encoded string can be larger than that obtained in the best classical protocol for the task. Our result is intriguing as we know from Holevo's theorem (and more recently from Frenkel-Weiner's result [Commun. Math. Phys. 340, 563 (2015)]) that there exist communication scenarios wherein quantum resources prove to be of no advantage over classical resources. A distinguishing feature of…

research product

Parity Oblivious d-Level Random Access Codes and Class of Noncontextuality Inequalities

One of the fundamental results in quantum foundations is the Kochen-Specker no-go theorem. For the quantum theory, the no-go theorem excludes the possibility of a class of hidden variable models where value attribution is context independent. Recently, the notion of contextuality has been generalized for different operational procedures and it has been shown that preparation contextuality of mixed quantum states can be a useful resource in an information-processing task called parity-oblivious multiplexing. Here, we introduce a new class of information processing tasks, namely d-level parity oblivious random access codes and obtain bounds on the success probabilities of performing such task…

research product

Strong Quantum Solutions in Conflicting Interest Bayesian Games

Quantum entanglement has been recently demonstrated as a useful resource in conflicting-interest games of incomplete information between two players, Alice and Bob [Pappa et al., Phys. Rev. Lett. 114, 020401 (2015)]. The general setting for such games is that of correlated strategies where the correlation between competing players is established through a trusted common adviser; however, players need not reveal their input to the adviser. So far, the quantum advantage in such games has been revealed in a restricted sense. Given a quantum correlated equilibrium strategy, one of the players can still receive a higher than quantum average payoff with some classically correlated equilibrium str…

research product

Limited preparation contextuality in quantum theory and its relation to the Cirel'son bound

Kochen-Specker (KS) theorem lies at the heart of the foundations of quantum mechanics. It establishes impossibility of explaining predictions of quantum theory by any noncontextual ontological model. Spekkens generalized the notion of KS contextuality in [Phys. Rev. A 71, 052108 (2005)] for arbitrary experimental procedures (preparation, measurement, and transformation procedure). Interestingly, later on it was shown that preparation contextuality powers parity-oblivious multiplexing [Phys. Rev. Lett. 102, 010401 (2009)], a two party information theoretic game. Thus, using resources of a given operational theory, the maximum success probability achievable in such a game suffices as a \emph{…

research product