0000000000606267

AUTHOR

Natalia Robledinos-antón

showing 4 related works from this author

Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach

2018

Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This netw…

0301 basic medicineRMSystems AnalysisNF-E2-Related Factor 2MedicinaNF-KAPPA-BAnti-Inflammatory AgentsTYPE-2 DIABETES-MELLITUSGENE PROMOTER POLYMORPHISMDiseaseComputational biologyInteractomeenvironment and public healthGLYCOGEN-SYNTHASE KINASETUMOR-SUPPRESSOR PTENNRF203 medical and health sciencesDrug DiscoveryAnimalsHumansTherapeutic targetsMedicineMolecular Targeted TherapyBardoxolone methylPLACEBO-CONTROLLED PHASE-3PharmacologyMechanism (biology)Drug discoverybusiness.industryDrug RepositioningRChronic inflammationrespiratory systemHEME OXYGENASE 1PROTEIN-PROTEIN INTERACTION3. Good healthSystems medicineDrug repositioning030104 developmental biologyDrug developmentEXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITISChronic DiseaseSystems medicineMolecular MedicineFUMARIC-ACID ESTERSbusiness
researchProduct

Corrigendum to “European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS…

2018

The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics b…

0301 basic medicineSocieties ScientificRedox signalingInternational CooperationClinical BiochemistryNanotechnologyReview ArticleBiologyPublic administrationBiochemistryAntioxidantsArticle03 medical and health sciencesmedia_common.cataloged_instanceAnimalsHumansCost actionEuropean UnionEuropean unionMolecular Biologylcsh:QH301-705.5media_commonFunding AgencyRedox therapeuticslcsh:R5-920Organic ChemistryReactive nitrogen species030104 developmental biologyWork (electrical)lcsh:Biology (General)Oxidative stressReactive Oxygen Specieslcsh:Medicine (General)Oxidation-ReductionSignal TransductionRedox Biology
researchProduct

p73 is required for ependymal cell maturation and neurogenic SVZ cytoarchitecture

2015

The adult subventricular zone (SVZ) is a highly organized microenvironment established during the first postnatal days when radial glia cells begin to transform into type B-cells and ependymal cells, all of which will form regenerative units, pinwheels, along the lateral wall of the lateral ventricle. Here, we identify p73, a p53 homologue, as a critical factor controlling both cell-type specification and structural organization of the developing mouse SVZ. We describe that p73 deficiency halts the transition of the radial glia into ependymal cells, leading to the emergence of immature cells with abnormal identities in the ventricle and resulting in loss of the ventricular integrity. p73-de…

0301 basic medicineEpendymal CellCiliumNeurogenesisSubventricular zoneBiology03 medical and health sciencesCellular and Molecular NeuroscienceLateral ventricles030104 developmental biologymedicine.anatomical_structureDevelopmental NeuroscienceCytoarchitectureCiliogenesismedicineskin and connective tissue diseasesEpendymaneoplasmsNeuroscienceDevelopmental Neurobiology
researchProduct

European contribution to the study of ROS : A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)

2017

WOS: 000410470000009

0301 basic medicinereactive oxygen species ; reactive nitrogen species ; redox signaling ; oxidative stress ; antioxidants ; redox therapeuticsRedox signalingInternational CooperationSMOOTH-MUSCLE-CELLS[SDV]Life Sciences [q-bio]Clinical BiochemistryISCHEMIA-REPERFUSION INJURYReviewddc:616.07Bioinformaticsmedicine.disease_causeBiochemistryAntioxidants0302 clinical medicineENDOPLASMIC-RETICULUM STRESSCost actionlcsh:QH301-705.5ComputingMilieux_MISCELLANEOUSmedia_commonlcsh:R5-920Redox therapeuticsReactive nitrogen species3. Good healthVariety (cybernetics)MANGANESE SUPEROXIDE-DISMUTASECHRONIC GRANULOMATOUS-DISEASERisk analysis (engineering)ddc:540lcsh:Medicine (General)Oxidation-ReductionSignal TransductionSocieties ScientificPULMONARY ARTERIAL-HYPERTENSIONMedicinaEstrès oxidatiuBiology03 medical and health sciencesAntioxidants ; Oxidative Stress ; Reactive Nitrogen Species ; Reactive Oxygen Species ; Redox Signaling ; Redox TherapeuticsJournal Articlemedicinemedia_common.cataloged_instanceAnimalsHumans[CHIM]Chemical SciencesEuropean UnionEuropean unionNITRIC-OXIDE SYNTHASETANDEM MASS-SPECTROMETRYMolecular BiologyMITOCHONDRIAL OXIDATIVE STRESSGROWTH-FACTOR-BETAOrganic ChemistryDisease progressionBiology and Life SciencesOxidation reductionManganese Superoxide Dismutase030104 developmental biologylcsh:Biology (General)Oxidative stressReactive oxygen species030217 neurology & neurosurgeryOxidative stressRedox biology
researchProduct