0000000000606771

AUTHOR

Jean-pierre Meunier

Radiation effects on silica-based preforms and optical fibers-I: Experimental study with canonical samples

International audience; Prototype samples of preforms and associated fibers have been designed and fabricated through MCVD process to investigate the role of fluorine (F) and germanium (Ge) doping elements on the radiation sensitivity of silica-based glasses. We characterized the behaviors of these canonical samples before, during and after 10 keV X-ray irradiation through several spectroscopic techniques, to obtain global information (in situ absorption measurements, electron paramagnetic resonance) or spatially-resolved information (confocal microscopy, absorption and luminescence on preform). These tests showed that, for the Ge-doped fiber and in the 300–900 nm range, the radiation-induc…

research product

Radiation effects on silica-based preforms and optical fibers-II: Coupling ab initio simulations and experiments

International audience; Abstract—Experimental characterization through electron paramagnetic resonance (EPR) and confocal luminescence microscopy (CML) of a Ge-doped glass (preform and fiber) reveals the generation of several point defects by 10 keV X-ray radiation-induced attenuation: GeE', Ge(1), Ge(2), and Ge-ODC. The generation mechanisms of Ge-ODC and charged defects like GeE' centers are studied through ab initio simulation. Our calculations used a 108 atom supercell with a glass composition comparable to the Ge-doped core or to the pure-silica cladding of the canonical sample. The large size of our cell allows us to study the influence of the local environment surrounding the X-ODC d…

research product