6533b855fe1ef96bd12b07d9
RESEARCH PRODUCT
Radiation effects on silica-based preforms and optical fibers-II: Coupling ab initio simulations and experiments
Aziz BoukenterRoberto BoscainoP. PailletLayla Martin-samosYoucef OuerdaneMarco CannasJ. BaggioG. OriglioJean-pierre MeunierSylvain GirardNicolas Richardsubject
Nuclear and High Energy PhysicsMaterials scienceoptical fibersAb initio02 engineering and technology01 natural sciencesMolecular physicslaw.inventionlawAb initio quantum chemistry methods0103 physical sciencesAtomElectrical and Electronic Engineeringdensity functionalElectron paramagnetic resonancetheorydefects010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]021001 nanoscience & nanotechnologyCrystallographic defectOptical fiber photosensitivity absorption luminescenceAmorphous solidBond lengthNuclear Energy and Engineeringsilicaradiation effectsAb initio calculationssilica.0210 nano-technologyLuminescencedescription
International audience; Abstract—Experimental characterization through electron paramagnetic resonance (EPR) and confocal luminescence microscopy (CML) of a Ge-doped glass (preform and fiber) reveals the generation of several point defects by 10 keV X-ray radiation-induced attenuation: GeE', Ge(1), Ge(2), and Ge-ODC. The generation mechanisms of Ge-ODC and charged defects like GeE' centers are studied through ab initio simulation. Our calculations used a 108 atom supercell with a glass composition comparable to the Ge-doped core or to the pure-silica cladding of the canonical sample. The large size of our cell allows us to study the influence of the local environment surrounding the X-ODC defect (X = Si or Ge) on its structure parameters (e.g., Si-X bond length) and its energy of formation. We found a statistical correlation between these two characteristics for pure- and Ge-doped silica-based glasses suggesting that the Si-ODC and Ge-ODC will be preferentially generated at sites leading to the shortest Si-X distances. We also evaluated the possible influence of the local environments of the defect on their generation mechanisms. From the whole set of possible X-ODC in the amorphous cells, we calculated the charged structures that can be obtained through the removing of one electron of the cell. For pure-silica glass, about 80% of the oxygen vacancies lead to a dimer structure and 20% to puckered ones. For the doped glass, the percentage of the final dimer structures is reduced to 42% while the puckered charged percentage increases to 36%. We also note the appearance of 22% of divalent centers. Further simulation shows that the presence of the Ge inside the glass strongly affects the generation mechanisms of Si-related centers.
year | journal | country | edition | language |
---|---|---|---|---|
2008-12-08 |