0000000000001205

AUTHOR

Youcef Ouerdane

Radiation Hardened Optical Frequency Domain Reflectometry Distributed Temperature Fiber-Based Sensors

International audience; We study the performance of Optical Frequency Domain Reflectometry (OFDR) distributed temperature sensors using radiation resistant single-mode optical fibers. In situ experiments under 10 keV X-rays exposure up to 1 MGy( SiO 2 ) were carried out with an original setup that allows to investigate combined temperature and radiation effects on the sensors within a temperature range from 30 ° C to 250 ° C. Obtained results demonstrate that optical fiber sensors based on Rayleigh technique are almost unaffected by radiation up to the explored doses. We show that a pre-thermal treatment stabilize the sensor performance increasing the accuracy on temperature measurement fro…

research product

Coating impact and radiation effects on optical frequency domain Reflectometry fiber-based temperature sensors

International audience; Temperature response of radiation-tolerant OFDR-based sensors is here investigated, with particular attention on the impact of coating on OFS. By performing consecutive thermal treatments we developed a controlled system to evaluate the performances of our distributed temperature sensor and to estimate the radiation impact. We show an important evolution of the temperature coefficient measurements with thermal treatments for non-irradiated fiber and that the amplitude of this change decreases increasing radiation dose. As final results, we demonstrate that sensor performances are improved if we performed a pre-thermal treatment on the fiber-based system permitting to…

research product

Ge-doped silica nanoparticles: production and characterisation

Silica nanoparticles were produced from germanosilicate glasses by KrF laser irradiation. The samples were investigated by cathodoluminescence and scanning electron microscopy, providing the presence of nanoparticles with size from tens up to hundreds of nanometers. The emission of the Germanium lone pair center is preserved in the nanoparticles and atomic force microscopy revealed the presence of no spherical particles with a size smaller than ~4 nm. The absorption coefficient enhancement induced by Ge doping is reputed fundamental to facilitate the nanoparticles production. This procedure can be applied to other co-doped silica materials to tune the nanoparticles features.

research product

Ultraviolet-induced paramagnetic centers and absorption changes in singlemode Ge-doped optical fibers

We investigated the laser-energy-density dependence of absorption changes and paramagnetic centers induced by a cw Ar+ laser operating at 5.1 eV, in both unloaded and H-2-loaded single mode Ge-doped optical fibers. The induced absorption is measured in the blue and near ultraviolet spectral range by using the 3.1 eV photoluminescence, ascribed to Ge lone pair center (GLPC), as an in situ probe source. We find that the Ge (1) center (GeO4-) is induced upon UV exposure by electron trapping on GeO4 precursors, where the free electrons are most likely produced by ionization of GLPC. Ge (1) is responsible of optical transmission loss of the fiber in the investigated range. Hydrogen loading stron…

research product

Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2

International audience; We investigated the effects of 10-keV X-ray radiation on the transmission properties of F-doped optical fibers in the 200–850 nm range of wavelengths (1.5–6 eV). We also studied the influence of pre-loading this kind of fibers with hydrogen on its radiation sensitivity. Our results showed that, for our experimental conditions (pre-treatment with H2 several months before irradiation with diffusion of all the H2 out the fiber core and cladding before X-ray exposure), this pre-treatment increases the radiation-induced attenuation in the ultraviolet part (200–300 nm) of the spectrum. A previous H2-loading has no influence at greater wavelengths. The nature of the radiati…

research product

Irradiation induced defects in fluorine doped silica

International audience; The role of fluorine doping in the response to UV pulsed laser and c radiation of silica preforms and fibers was studied using electron spin resonance (ESR) spectroscopy. Exposure to radiation mainly generates E0 centers, with the same effectiveness in fibers and in preforms. The E'concentration in F-doped silica fibers is found to increase with UV energy fluence till a saturation value, consistently with a precursor conversion process. These results show the fluorine role in reducing the strained Si–O bonds thus improving the radiation hardness of silica, also after drawing process.

research product

X-ray irradiation effects on fluorine-doped germanosilicate optical fibers

International audience; We report an experimental investigation on the effects of fluorine codoping on the radiation response of Ge-doped Optical Fibers (OFs) obtained by three different drawing conditions. The OFs were irradiated with 10 keV X-rays up to 300 Mrad and studied by online Radiation-Induced-Attenuation (RIA) measurements. Confocal Micro- Luminescence (CML) and Electron Paramagnetic Resonance (EPR) were also employed to investigate the permanent radiation-induced-defects. The variation of the Germanium-Lone-Pair-Center (GLPC) and Non-Bridging- Oxygen-Hole-Centers (NBOHC) concentration with the radiation dose is investigated by CML, whereas the ones of the induced Ge(1), Ge(2) an…

research product

Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed x-ray irradiation

We investigated the nature, optical properties, and decay kinetics of point defects causing large transient attenuation increase observed in silica-based optical fibers exposed to short duration and high-dose rate x-ray pulses. The transient radiation-induced attenuation (RIA) spectra of pure-silica-core (PSC), Ge-doped, F-doped, and Ge + F-doped optical fibers (OFs) were acquired after the ionizing pulse in the spectral range of [∼0.8–∼3.2] eV (∼1500–∼380 nm), from a few ms to several minutes after the pulse, at both room temperature (RT) and liquid nitrogen temperature (LNT). Comparing the fiber behavior at both temperatures better highlights the thermally unstable point defects contribut…

research product

Optical frequency domain reflectometer distributed sensing using microstructured pure silica optical fibers under radiations

International audience; We investigated the capability of micro-structured optical fibers to develop multi-functional, remotely-controlled, Optical Frequency Domain Reflectometry (OFDR) distributed fiber based sensors to monitor temperature in nuclear power plants or high energy physics facilities. As pure-silica-core fibers are amongst the most radiation resistant waveguides, we characterized the response of two fibers with the same microstructure, one possessing a core elaborated with F300 Heraeus rod representing the state-of-the art for such fiber technology and one innovative sample based on pure sol-gel silica. Our measurements reveal that the Xray radiations do not affect the capaci…

research product

Evidence of different red emissions in irradiated germanosilicate materials

International audience; This experimental investigation is focused on a radiation induced red emission in Ge doped silica materials, elaborated with different methods and processes. The differently irradiated samples as well as the pristine ones were analyzed with various spectroscopic techniques, such as confocal microscopy luminescence (CML), time resolved luminescence (TRL), photoluminescence excitation (PLE) and electron paramagnetic resonance (EPR). Our data prove that irradiation induces a red luminescence related to the presence of the Ge atoms. Such emission features a photoexcitation spectrum in the UV-blue spectral range and, TRL measurements show that its decrease differs from a …

research product

Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing

International audience; We have studied the generation mechanisms of two different radiation-induced point defects, the Ge(1) and Ge(2) centers, in a germanosilicate fiber and in its original preform. The samples have been investigated before and after X-ray irradiation using the confocal microscopy luminescence and the electron paramagnetic resonance techniques. Our experimental results show the higher radiation sensitivity of the fiber as compared to the perform and suggest a relation between Ge(1) and Ge(2) generation. To explain our data we have used different models, finding that the destruction probability of the Ge(1) and Ge(2) defects is larger in fiber than in preform, whereas the …

research product

Interstitial O2 distribution in amorphous SiO2 nanoparticles determined by Raman an Photoluminescence spectroscopy

The O2 content and emission properties in silica nanoparticles after thermal treatments in oxygen rich atmosphere have been investigated by Raman and photoluminescence measurements. The nanoparticles have different sizes with average diameter ranging from 7 up to 40 nm. It is found that O2 concentration in nanoparticles monotonically increases with nanoparticles size. This finding is independent on the measurement technique and evidences that oxygen molecules are not present in all the nanoparticles volume. This dependence is interpreted on the basis of a structural model for nanoparticles consisting of a core region able to host the oxygen molecules and a surface shell of fixed size and fr…

research product

Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers

The so-called canonical optical fibers (OFs) are samples especially designed to highlight the impact of some manufacturing process parameters on the radiation responses. Thanks to the results obtained on these samples, it is thus possible to define new procedures to better control the behaviors of OFs in radiation environments. In this article, we characterized the responses, under steady-state X-rays, of canonical samples representative of the most common fiber types differing by their core-dopants: pure silica, Ge, Al, and P. Their radiation-induced attenuation (RIA) spectra were measured online at both room temperature (RT) and liquid nitrogen temperature (LNT), in the energy range [~0.6…

research product

Near infrared radio-luminescence of O2 loaded radiation hardened silica optical fibers: A candidate dosimeter for harsh environments

We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O2 molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O2 loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O2 molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The results s…

research product

Laser wavelength effects on the refractive index change of waveguides written by femtosecond pulses in silica glasses

We investigate the influence of two fs-laser wavelengths (343 and 800 nm) on the induced refractive index change (Δn) of waveguides written in silica materials. Results show that Δn is higher for waveguides photo-inscribed with UV photons.

research product

Vulnerability of OFDR-based distributed sensors to high γ-ray doses

Vulnerability of Optical Frequency Domain Reflectometry (OFDR) based sensors to high γ-ray doses (up to 10 MGy) is evaluated with a specific issue of a radiation-hardened temperature and strain monitoring system for nuclear industry. For this, we characterize the main radiation effects that are expected to degrade the sensor performances in such applicative domain: the radiation-induced attenuation (RIA), the possible evolution with the dose of the Rayleigh scattering phenomenon as well as its dependence on temperature and strain. This preliminary investigation is done after the irradiation and for five different optical fiber types covering the range from radiation-hardened fibers to highl…

research product

Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors

AbstractWe present an innovative architecture of a Rayleigh-based optical fibre sensor for the monitoring of water level and temperature inside storage nuclear fuel pools. This sensor, able to withstand the harsh constraints encountered under accidental conditions such as those pointed-out during the Fukushima-Daiichi event (temperature up to 100 °C and radiation dose level up to ~20 kGy), exploits the Optical Frequency Domain Reflectometry technique to remotely monitor a radiation resistant silica-based optical fibre i.e. its sensing probe. We validate the efficiency and the robustness of water level measurements, which are extrapolated from the temperature profile along the fibre length, …

research product

Origin of the visible absorption in radiation-resistant optical fibers

In this work we investigated the point defects at the origin of the degradation of radiation-tolerant optical fibers used in the visible part of the spectrum for plasma diagnostics in radiation environments. For this aim, the effects of γ -ray irradiation up to the dose of 10 MGy(SiO2) and post-irradiation thermal annealing at 550◦C were studied for a Fluorinedoped fiber. An absorption peaking around 2 eV is mainly responsible for the measured radiation-induced losses, its origin being currently debated in the literature. On the basis of the unchanging shape of this band with the radiation dose, its correlation with the 1.9 eV photoluminescent band and the thermal treatment results we assig…

research product

Effects of radiation and hydrogen-loading on the performances of raman-distributed temperature fiber sensors

International audience; The integration of Raman-distributed temperature fiber-based sensors (RDTS) into the envisioned French deep geological repository for nuclear wastes, called Cigéo requires evaluating how the performances of RDTS evolve in harsh environments, more precisely in presence of H2 or γ-rays. Both H2 and radiations are shown to affect the temperature measurements made with the single-ended RDTS technology. The amplitudes of the observed effects depend on the different classes of multimode fibers varying in terms of composition and coatings. By selecting the most tolerant fiber structure for the sensing, we could maintain the RDTS performances for such application. A hardeni…

research product

O2-Loading Treatment of Ge-Doped Silica Fibers: A Radiation Hardening Process

International audience; The effects of a high-pressure O2-loading treatment on the radiation response of Ge-doped optical fibers (OFs) were investigated. We found that the incorporation of high concentration of interstitial molecular oxygen remarkably enhances the resistance to ionizing radiation of Ge-doped OFs in the UV-Visible domain and, at the same time, improves the transmission of UV light in the unirradiated OF sample. By comparison with previously reported results, the O2-loading treatment turned out to increase the radiation resistance of Ge-doped OFs more efficiently than F or Ce codoping. The understanding of such amelioration relies in basic radiation-induced mechanisms that we…

research product

Neutron-induced defects in optical fibers

We present a study on 0.8 MeV neutron-induced defects up to fluences of 1017 n/cm2 in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.

research product

γ-ray induced GeODC(II) centers in germanium doped α-quartz crystal

International audience; Main luminescence of α-quartz crystal doped with germanium results from the luminescence of a self-trapped exciton (STE) near germanium. In as grown Ge-doped α-quartz crystal, the luminescence associated with the twofold coordinated Ge center (GeODC) in amorphous silica glass doped with germanium, was never observed. In this work, we performed experiments to investigate if a GeODC like luminescence could appear after a γ-irradiation of a Ge-doped α-quartz crystal. The answer is positive: under excitation with pulsed light of an ArF laser (193 nm): a new luminescence with two bands -- a blue one associated to a time constant of about 100 μs appears and another one wit…

research product

Influence of neutron and gamma-ray irradiations on rad-hard optical fiber

We investigated point defects induced in rad-hard Fluorine-doped optical fibers using both a mixed source of neutrons (fluences from 1015 to 1017 n/cm2) and γ-rays (doses from 0.02 to 2 MGy) and by a γ-ray source (dose up to 10 MGy). By combining several complementary spectroscopic techniques such as radiation-induced attenuation, confocal micro-luminescence, time-resolved photo-luminescence and electron paramagnetic resonance, we evidenced intrinsic and hydrogen-related defects. The comparison between the two irradiation sources highlights close similarities among the spectroscopic properties of the induced defects and the linear correlation of their concentration up to 1016 n/cm2. These r…

research product

Transient absorption with a femtosecond tunable excitation pump reveals the emission kinetics of color centers in amorphous silica.

We report a set of femtosecond (fs) transient absorption (TA) measurements following the dynamics of the so-called nonbridging oxygen hole center in silica, a model color center in wide bandgap amorphous solids, characterized by a very large Stokes shift between the UV excitation and its associated red emission at 1.9 eV. The changes in the TA spectrum were probed in the UV-visible range at various delays after photoexcitation and analyzed as a function of the UV excitation energy, in single-photon absorption conditions. The combination of the experiments helps to clarify the defect photocycle, highlighting how TA measurements with tunable UV excitation could represent a powerful tool to in…

research product

Radiation effects on silica-based preforms and optical fibers-I: Experimental study with canonical samples

International audience; Prototype samples of preforms and associated fibers have been designed and fabricated through MCVD process to investigate the role of fluorine (F) and germanium (Ge) doping elements on the radiation sensitivity of silica-based glasses. We characterized the behaviors of these canonical samples before, during and after 10 keV X-ray irradiation through several spectroscopic techniques, to obtain global information (in situ absorption measurements, electron paramagnetic resonance) or spatially-resolved information (confocal microscopy, absorption and luminescence on preform). These tests showed that, for the Ge-doped fiber and in the 300–900 nm range, the radiation-induc…

research product

Influence of <formula formulatype="inline"><tex Notation="TeX">${\hbox{O}}_2$</tex></formula>-Loading Pretreatment on the Radiation Response of Pure and Fluorine-Doped Silica-Based Optical Fibers

We investigated the impact of an oxygen preloading on pure-silica-core or fluorine-doped-core fiber responses to high irradiation doses (up to 1 MGy (SiO 2 )). Oxygen enrichment was achieved through a diffusion-based technique, and the long-term presence of O 2 molecules was confirmed by micro-Raman experiments. Online radiation induced attenuation (RIA) experiments were carried out in both the pristine and the O 2 -loaded optical fibers to investigate the differences induced by this pretreatment in the UV and visible ranges. Contrary to results recently published on the positive impact of O 2 on infrared RIA, our results reveal a RIA increase with O 2 presence. Data are analyzed in order t…

research product

Paramagnetic germanium-related centers induced by energetic radiation in optical fibers and preforms

International audience; We investigated the creation processes of Ge-related paramagnetic point defects in silica fibers and preforms, doped with different amounts of germanium, and X-ray irradiated at several radiation doses. Different paramagnetic defect species, like GeE0, Ge(1) and Ge(2), were revealed by electron paramagnetic resonance measurements and their concentration was studied as a function of the irradiation dose. The comparison with the optical absorption spectra points out the main role of Ge(1) on the optical transmission loss of fibers in the UV region.

research product

Optical properties of phosphorous-related point defects in silica fiber preforms

Physical review / B 80, 205208 (2009). doi:10.1103/PhysRevB.80.205208

research product

Raman investigation of the drawing effects on Ge-doped fibers

International audience; We have investigated the Raman activity of various germanosilicate fibers and their associated preforms. Our data indicate an enhancement in small rings' (3-member rings) concentration in the silica-based matrix of the fibers during the drawing process. The generation of such rings appears compatible with an increase of the sample density and fictive temperature. The data regarding the drawing effects on the fiber stress appear less clear, and it is possible to suggest that in some cases the drawing could lower the tensile stress. Finally we have also provided evidence that changing the drawing conditions within the usual range of application leads to no significant …

research product

Optical and photonic material hardness for energetic environments

We studied the effects of dielectric change in the chemical composition and in the realization procedures under radiation exposure. We have compared the radiation effects on Ge-doped and F-doped fibers and preforms: the first play a crucial role in the photosensitivity property, the second improves the dielectric radiation hardness even at low concentrations. The use of different spectroscopic techniques (RIA, OA, EPR) allow the identification of the point defect formation mechanisms at the origin of the optical degradation properties.

research product

Performance Analysis of a Prototype High‐Concentration Photovoltaic System Coupled to Silica Optical Fibers

High-concentration photovoltaic (HCPV) systems are one of the most promising technologies for the generation of renewable energy with high-conversion efficiency. Their development is still at an early stage, but the possibility of integrating high-concentration systems into buildings offers new opportunities to achieve the net-zero-energy building goal. Herein, the optical and energetic performance of a hybrid daylighting−HCPV prototype based on pure- or doped-silica optical fibers (OFs) to guide 2000× concentrated sunlight inside the buildings is evaluated. There, the light can either be used to illuminate interior spaces or projected on solar cells to generate electricity. The system equi…

research product

Influence of the drawing process on the defect generation in multistep-index germanium-doped optical fibers

International audience; Variation of germanium lone pair center (GLPC) concentration in germanosilicate multistep-index optical fibers and preforms was studied using confocal microscopy luminescence technique. The experimental results provide evidence that in the central core region ([Ge] ~11 wt. % ) of our specific canonical samples the ratio [GLPC]/[Ge] is five times larger in fiber than in preforms. The relative influence of the glass composition and of the drawing process on the generation efficiency of the GLPC defects that drive the glass photosensitivity is discussed. The radial distribution of these defects suggests a possible enhancement of the defect creation related to the intern…

research product

X-ray irradiation influence on prototype Er3+-optical fibers: confocal luminescence study

International audience; The integration of rare-earth doped optical fibers as part of fiber-based systems in space implies the development of waveguides tolerant to the radiation levels associated with the space missions. We report the spatial distribution, the photoluminescence (PL) properties of color centers and the related changes induced by X-rays radiation at different doses (50, 500 and 1000 krad) for two different prototypes of Er-doped optical fibers. Each sample (in the version pristine, X-irradiated and H2 loaded prior to radiation exposure) was characterized by confocal microscopy luminescence (CML) measurements in Visible range with Visible (488 nm) or UV (325 nm) laser light e…

research product

Phosphorous doping and drawing effects on the Raman spectroscopic properties of O=P bond in silica-based fiber and preform.

International audience; We report an experimental study of the doping and drawing effects on the Raman activities of phosphorus (P)-doped silica-based optical fiber and its related preform. Our data reveal a high sensitivity level in the full width at half maximum value of the 1330 cm−1 (O = P) Raman band to the P-doping level. Its increase with the P doping level does not clash with an increase in the disorder of the O = P surrendering matrix. In addition, we observe that in the central core region of the sample (higher doping level), the drawing process decreases the relative band amplitude. We tentatively suggest that this phenomenon is due to the change in the first derivate of the bond…

research product

Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers

International audience; We investigated the combined effects of temperature and X-rays exposures on the nature of point defects generated in Ge-doped multimode optical fibers. Electron paramagnetic resonance (EPR) results on samples X-ray irradiated at 5 kGy(SiO2), employing different temperatures and dose rates, are reported and discussed. The data highlight the generation of the Ge(1), Ge(2), E0 Ge and E0 Si defects. For the Ge(1) and Ge(2), we observed a decrease in the induced defect concentrations for irradiation temperatures higher than *450 K, whereas the E0 defects feature an opposite tendency. The comparison with previous post-irradiation thermal treatments reveals peculiar effects…

research product

Spectral properties and lifetime of green emission in γ-ray irradiated bismuth-doped silica photonic crystal fibers

Abstract We report an experimental investigation focused on the green emission detected in γ-ray irradiated Bismuth-doped photonic crystal fibers. Our photoluminescence spectra, recorded at room temperature, provide evidence for the presence of two emission bands both located at ~ 530 nm (2.34 eV). One emission is detected only in the Bi-doped core while the other, is detected in the cladding. These two emissions feature different excitation spectra and a fast and a slow decay lifetime. The origin of the fast emission decay, about ten nanoseconds, is tentatively attributed to a silica intrinsic defect, whereas the slow component, having lifetime of about 2 μs and featuring anti-stokes emiss…

research product

Steady state γ-ray radiation effects on Brillouin fiber sensors

International audience; Brillouin optical time-domain analysis (BOTDA) sensors offer remarkable advantages for the surveillance of the planned French deep geological radioactive wastes repository, called Cigéo1,2. In this work we study the performances of Brillouin distributed sensors in harsh environment. We evaluate the radiation tolerance of different sensor classes and their responses evolution during γ-ray exposition with 1kGy/h dose rate (to reach ~0.2MGy) and after 1, 3, 6 and 10 MGy accumulated doses. Measurements on strained Ge-doped SMF are reported to highlight the variation on Brillouin scattering proprieties, both intrinsic frequency position of Brillouin shift and its dependen…

research product

Investigation of Coating Impact on OFDR Optical Remote Fiber-Based Sensors Performances for Their Integration in High Temperature and Radiation Environments

The response of optical frequency-domain reflectometry-based temperature sensors is here investigated in harsh environments (high temperature, high radiation dose) focusing the attention on the impact of the fiber coating on the sensor performances in such conditions. Our results demonstrate that the various coating types evolve differently under thermal treatment and/or radiations, resulting in a small (<5%) change in the temperature coefficient of the sensor. The identified procedure, consisting of a prethermal treatment of the fiber at its maximum coating operating temperature, is here verified up to 150 °C for higherature acrylate and up to 300 °C for polyamide coating. This method allo…

research product

X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions

International audience; We report an experimental study based on confocal microscopy luminescence (CML) and electron paramagnetic resonance (EPR) measurements to investigate the effects of the X-ray (from 50 krad to 200 Mrad) on three specific multistep Ge doped fibers obtained from the same preform by changing some of the drawing conditions (tension and speed). CML data show that, both before and after the irradiation, Germanium Lone Pair Center (GLPC) concentrations are similarly distributed along the diameters of the three fibers and they are partially reduced by irradiation. The irradiation induces also the Non Bridging Oxygen Hole Center (NBOHC) investigated by CML and other paramagnet…

research product

Influence of fluorine on the fiber resistance studied through the nonbridging oxygen hole center related luminescence

The distribution of Non-Bridging Oxygen Hole Centers (NBOHCs) in fluorine doped optical fibers was investigated by confocal microluminescence spectroscopy, monitoring their characteristic 1.9 eV luminescence band. The results show that these defects are generated by the fiber drawing and their concentration further increases after c irradiation. The NBOHC concentration profile along the fiber provides evidence for an exponential decay with the fluorine content. This finding agrees with the role of fluorine in the fiber resistance and is discussed, from the microscopic point of view, by looking at the conversion mechanisms from strained bonds acting as precursors.

research product

Irradiation temperature effects on the induced point defects in Ge-doped optical fibers

We present an experimental investigation on the combined effects of temperature and irradiation on Ge-doped optical fibers. Our samples were X-ray (10 keV) irradiated up to 5 kGy with a dose rate of 50 Gy(SiO2)/s changing the irradiation temperature in the range 233-573 K. After irradiation we performed electron paramagnetic resonance (EPR) and confocal microscopy luminescence (CML) measurements. The recorded data prove the generation of different Ge related paramagnetic point defects and of a red emission, different from that of the Ge/Si Non-Bridging Oxygen Hole center. Furthermore, by comparing the behaviour of the EPR signal of the Ge(1) as a function of the irradiation temperature with…

research product

Influence of the manufacturing process on the radiation sensitivity of fluorine-doped silica-based optical fibers

International audience; In this work, we analyze the origins of the observed differences between the radiation sensitivities of fluorine-doped optical fibers made with different fabrication processes. We used several experimental techniques, coupling in situ radiation-induced absorption measurements with post mortem confocal microscopy luminescence measurements. Our data showed that the silica intrinsic defects are generated both from precursor sites and from strained regular Si-O-Si linkages. Our work also provides evidence for the preponderant role of the chlorine in determining the optical losses at about 3.5 eV. The results show that the manufacturing process of these fibers strongly af…

research product

Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure

The nature of the radiation-induced point defects in amorphous silica is investigated through online photoluminescence (PL) under high intensity ultrashort laser pulses. Using 1030 nm femtosecond laser pulses with a repetition rate of 1 kHz, it is possible to study the induced color centers through their PL signatures monitored during the laser exposure. Their generation is driven by the nonlinear absorption of the light related to the high pulse peak powers provided by femtosecond laser, allowing to probe the optical properties of the laser exposed region. The experiment is conducted as a function of the laser pulse power in samples with different OH contents. The results highlight the dif…

research product

Spectroscopic studies of the origin of the radiation-induced degradation in phosphorous-doped optical fiber and preforms

In this paper, we study the radiation-induced point defects related to the phosphorus element that is commonly used to improve the optical properties of silica-based glasses but is responsible of a dramatic increase in their radiation sensitivity. To this aim, the influence of x-ray irradiation on prototype phosphorus-doped canonical fibers and their related preforms was investigated by in situ radiation induced attenuation (RIA), optical absorption, and electron spin resonance (ESR) spectroscopy. The RIA spectra in the (1.5-5 eV) range, can be explained by the presence of at least three absorption bands induced by radiation exposure. Additionally the X-dose dependence of such bands was stu…

research product

O2 Loaded Germanosilicate Optical Fibers: Experimental In Situ Investigation and Ab Initio Simulation Study of GLPC Evolution under Irradiation

International audience; In this work we present a combined experimental and ab initio simulation investigation concerning the Germanium Lone Pair Center (GLPC), its interaction with molecular oxygen (O2), and evolution under irradiation. First, O2 loading has been applied here to Ge-doped optical fibers to reduce the concentration of GLPC point defects. Next, by means of cathodoluminescence in situ experiments, we found evidence that the 10 keV electron irradiation of the treated optical fibers induces the generation of GLPC centers, while in nonloaded optical fibers, the irradiation causes the bleaching of the pre-existing GLPC. Ab initio calculations were performed to investigate the reac…

research product

Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers

International audience; We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-doped fibers, we observed that the Ge(1) and the Ge(2) d…

research product

Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors

International audience; Raman Distributed Temperature Sensors (RDTS) offer exceptional advantages for the monitoring of the envisioned French deep geological repository for nuclear wastes, called Cigéo. Here, we present experimental studies on how the performances of RDTS evolve in harsh environments like those associated with H2 or g-rays. Both of them are shown to strongly affect the temperature measurements made with RDTS. We showed that by adapting the characteristics of the used fiber for the sensing, we could limit its degradation but that additional hardening by system studies will have to be developed before integration of RDTS in Cigéo.

research product

Pulsed X‐Ray Radiation Responses of Solarization‐Resistant Optical Fibers

International audience; The transient radiation‐induced attenuation (RIA) of two different versions of pure‐silica‐core (PSC) multimode optical fibers (so‐called “solarization‐resistant” fibers) exposed to nanosecond 1 MeV X‐ray pulses are investigated. On‐line RIA spectra measurements at both room temperature (RT) and liquid nitrogen temperatures (LNT) in the range 1–3.5 eV are performed. Following the RIA kinetics, the properties of the metastable defects that are bleached just after the pulse are discussed. The spectral decomposition of the RIA is performed using known Gaussian bands associated to point defects absorbing in this spectral range. For both fiber types, the generation and th…

research product

Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorous‐Doped Optical Fibers

International audience; This work focuses on the effects of high dose ionizing radiation, up to 10 MGy(SiO2), on P‐doped multimode optical fibers (OF) at different irradiation temperatures. The investigation is based on two complementary experimental techniques: radiation‐induced attenuation (RIA) measurements and electron paramagnetic resonance (EPR). The latter technique allows measuring the P1, P2, metastable‐POHC and stable‐POHC defects. Three OF samples are drawn from the same preform to evaluate the influence of changing their drawing conditions of the OFs on the radiation responses. This first study is performed under X‐rays at room temperature. The results are compared with the ones…

research product

Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers

International audience; We investigate the response of Ge-doped, P-doped, pure-silica, or Fluorine-doped fibers to extreme environments combining doses up to MGy(SiO $_{{{2}}}$) level of 10 keV X-rays and temperatures between 25 C and 300 C . First, we evaluate their potential to serve either as parts of radiation tolerant optical or optoelectronic systems or at the opposite, for the most sensitive ones, as punctual or distributed dosimeters. Second, we improve our knowledge on combined ionizing radiations and temperature (R&T) effects on radiation-induced attenuation (RIA) by measuring the RIA spectra in the ultraviolet and visible domains varying the R&T conditions. Our results reveal the…

research product

Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams

Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence from the irradiation area to a signal readout system. The luminescence pulses in the samples induced by the electron bunches were studied as a function of deposited dose per electron bunch. All the investigated samples were found to have a linear response in terms of luminescence as a function of electron bunch sizes between 10−5 Gy/bunch and 1.5×10−2 Gy/bunch. The presented results show that these…

research product

Micro-Raman investigation of X or gamma irradiated Ge doped fibers

International audience; Micro-Raman spectra have been recorded on Ge doped optical fibers before and after 10 keV-X or c-ray irradiation up to doses of 1 MGy (X-ray) or 7.8 MGy (-ray). Our data provide evidence that, at such dose levels, the glass matrix is not modified in a detectable way. We observed that varying the Ge doping levels from 0 to about 11 wt.%, X or radiation sensitivity of the overall matrix remains unchanged. Such results are observed for fibers obtained with drawing conditions within the usual range used for the fabrication of specialty fibers as radiation-tolerant waveguides. Our data support the potentiality of fiberbased sensors using glass properties, e.g. Raman sc…

research product

Study of silica-based intrinsically emitting nanoparticles produced by an excimer laser

International audience; We report an experimental study demonstrating the feasibility to produce both pure and Ge-doped silica nanoparticles (size ranging from tens up to hundreds of nanometers) using nanosecond pulsed KrF laser ablation of bulk glass. In particular, pure silica nanoparticles were produced using a laser pulse energy of 400 mJ on pure silica, whereas Ge-doped nanoparticles were obtained using 33 and 165 mJ per pulse on germanosilicate glass. The difference in the required energy is attributed to the Ge doping, which modifies the optical properties of the silica by facilitating energy absorption processes such as multiphoton absorption or by introducing absorbing point defect…

research product

Radiation hardening techniques for rare-earth-based optical fibers and amplifiers

Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern …

research product

Radiation effects on optical frequency domain reflectometry fiber-based sensor

International audience; We investigate the radiation effects on germanosilicate optical fiber acting as the sensing element of optical frequency domain reflectometry devices. Thanks to a new setup permitting to control temperature during irradiation, we evaluate the changes induced by 10 keV x rays on their Rayleigh response up to 1 MGy in a temperature range from −40°C up to 75°C. Irradiation at fixed temperature points out that its measure is reliable during both irradiation and the recovery process. Mixed temperature and radiation measurements show that changing irradiation temperature leads to an error in distributed measurements that depends on the calibration procedure. These results …

research product

Properties of Gd-Doped Sol-Gel Silica Glass Radioluminescence under Electron Beams

International audience; The radiation-induced emission (RIE) of Gd3+-doped sol–gel silica glass has been shown to have suitable properties for use in the dosimetry of beams of ionizing radiation in applications such as radiotherapy. Linear electron accelerators are commonly used as clinical radiotherapy beams, and in this paper, the RIE properties were investigated under electron irradiation. A monochromator setup was used to investigate the light properties in selected narrow wavelength regions, and a spectrometer setup was used to measure the optical emission spectra in various test configurations. The RIE output as a function of depth in acrylic was measured and compared with a reference…

research product

Multiphoton process investigation in silica by UV femtosecond laser

We investigated the interaction processes between high intensity femtosecond ultraviolet laser pulses and amorphous silica, leading to permanent refractive-index changes that are at the basis of advanced manufacturing for photonics devices. The experiment, carried out as a function of the laser power, improves our understanding on the strong-field ionization process by the monitoring of the 1.9 eV and 2.65 eV emissions, related to nonbridging oxygen hole centers and self-trapped exciton, respectively, induced in the exposed glass region. Our results clearly proved that the UV laser light band-to-band absorption is allowed in the multiphoton ionization limit, whose consecutive relaxation lea…

research product

Gd 3+ -doped sol-gel silica glass for remote ionizing radiation dosimetry

Gadolinium-doped silica glass was prepared, using the sol-gel route, for ionizing radiation dosimetry applications. Such a glassy rod was drawn to a cane at a temperature of 2000 °C. The structural and optical properties of the obtained material were studied using Raman, optical absorption, and photoluminescence spectroscopies. Thereafter, a small piece of this Gd-doped scintillating cane was spliced to a transport passive optical fiber, allowing the remote monitoring of the X-ray dose rate through a radioluminescence (RL) signal. The sample exhibited a linear RL intensity response versus the dose rate from 125 µGy(SiO2)/s up to 12.25 Gy/s. These results confirm the potentialities of this m…

research product

Dependence of the emission properties of the germanium lone pair center on Ge doping of silica

We present an experimental investigation regarding the changes induced by the Ge doping level on the emission profile of the germanium lone pair center (GLPC) in Ge doped silica. The investigated samples have been produced by the sol-gel method and by plasma-activated chemical vapor deposition and have doping levels up to 20% by weight. The recorded photoluminescence spectra show that the GLPC emission profile is the same when the Ge content is lower than ∼ 1% by weight, whereas it changes for higher doping levels. We have also performed Raman scattering measurements that show the decrease of the D1 Raman band at 490 cm( - 1) when the Ge content is higher than 1% by weight. The data suggest…

research product

Radiation effects on silica-based preforms and optical fibers-II: Coupling ab initio simulations and experiments

International audience; Abstract—Experimental characterization through electron paramagnetic resonance (EPR) and confocal luminescence microscopy (CML) of a Ge-doped glass (preform and fiber) reveals the generation of several point defects by 10 keV X-ray radiation-induced attenuation: GeE', Ge(1), Ge(2), and Ge-ODC. The generation mechanisms of Ge-ODC and charged defects like GeE' centers are studied through ab initio simulation. Our calculations used a 108 atom supercell with a glass composition comparable to the Ge-doped core or to the pure-silica cladding of the canonical sample. The large size of our cell allows us to study the influence of the local environment surrounding the X-ODC d…

research product

Near‐IR Radiation‐Induced Attenuation of Aluminosilicate Optical Fibers

The X-ray radiation-induced attenuation (RIA) growth kinetics are studied online in different single-mode aluminosilicate optical fibers in the near-IR (NIR) domain to evaluate their potential in terms of dosimetry. The optical fibers differ by Al contents, core sizes, drawing parameters, and also by a preform deposition process. The data show no dependence of the RIA on all these parameters, a positive result for the design of point or distributed radiation detectors exploiting RIA to monitor the dose. The RIA growth rate is unchanged for dose rates changing from 0.073 to 6.25 Gy(SiO2) s−1, and the RIA linearly increases with the dose up to 2 kGy(SiO2). Small but noticeable RIA changes are…

research product

Overview of radiation induced point defects in silica-based optical fibers

International audience; Silica-based optical fibers, fiber-based devices and optical fiber sensors are today integrated in a variety of harsh environments associated with radiation constraints. Under irradiation, the macroscopic properties of the optical fibers are modified through three main basic mechanisms: the radiation induced attenuation, the radiation induced emission and the radiation induced refractive index change. Depending on the fiber profile of use, these phenomena differently contribute to the degradation of the fiber performances and then have to be either mitigated for radiation tolerant systems or exploited to design radiation detectors and dosimeters. Considering the stro…

research product

Radiation Response of OFDR Distributed Sensors Based on Microstructured Pure Silica Optical Fibers

International audience; Temperature sensors based on microstructured pure silica optical fibers are investigated by OFDR and RIA performed during X-ray irradiation up to 50kGy dose. The results evidence that the temperature measures are poorly influenced by irradiation (the error being less than 0.3°C). Such a radiation tolerance is relevant for the use of these Rayleigh based sensors in harsh environments.

research product

On-Line Characterization of Gamma Radiation Effects on Single-Ended Raman Based Distributed Fiber Optic Sensor

We report distributed temperature measurements based on Raman scattering performed during steady state $\gamma $ -ray irradiation at a dose rate of 1 kGy( ${\rm SiO}_{2}$ )/h and up to a total ionizing dose (TID) of $\sim 0.1\ \hbox{MGy}$ . We characterize on-line the evolution of the performances of a single-ended Raman distributed temperature sensor (RDTS) during the $\gamma $ -ray exposure of different classes of commercial multimode fibers (MMFs) acting as the sensing element. RDTS is influenced by the radiation-induced attenuation (RIA) phenomena leading to both large errors in the temperature measurements and a diminution of the useful sensing length. The amplitude of the radiation-in…

research product

Ultraviolet-visible light-induced solarisation in silica-based optical fibres for indoor solar applications

Abstract The transmission performances of pure- and doped-silica (a-SiO2) optical fibres are compared during the exposure to a high-power broadband light source approximating the solar spectrum. From the Gaussian decomposition of the attenuation spectra, we found that Al- and P-doped fibres show a fast solarisation effect which leads to transmission degradation in the ultraviolet-visible range. Similarly, Ge-doped fibres undergo photoinduced colour-centre formation which, however, does not prevent visible-light propagation. One of the two tested pure-silica fibres results completely unaffected by light exposure whereas the other shows an absorption band probably due to the presence of chlor…

research product

Influence of Ce codoping and H2 pre-loading on Er/Yb-doped fiber: Radiation response characterized by Confocal Micro-Luminescence

International audience; Confocal microscopy luminescence measurements were applied to study the X-ray radiation response of Er/Yb-doped optical fibers in connection with H2 pre-loading and with the addition of another lanthanide element (Cerium) in the core composition. Laser excitations at 488 nm and 325 nm allow deriving the emission and absorption pattern of Er3+, the latter derived from the dips appearing in a wide luminescence band related to defects in silica. We found that the luminescence spectrum of the X-irradiated Er/Yb-doped core fiber evidences an increase in the emission intensity around 520 and 660 nm; in contrast, no changes are induced by radiation neither after H2 pre-load…

research product

Effect of irradiation temperature on the radiation induced attenuation of Ge-doped fibers

International audience; The UV-visible radiation induced attenuation (RIA) was studied in Ge-doped optical fibers, during X-ray (10 keV) irradiations at different temperatures. By comparing the spectra recorded in dissimilarly irradiated samples we evidenced the impact of the irradiation temperature. In details, we highlighted that, from a certain dose, increasing the temperature the RIA decreases for wavelengths lower than 470 nm, whereas at higher wavelengths the RIA depends only on the dose. Such findings suggest that it is possible to distinguish the irradiation temperature by comparing the signal at two different wavelengths. From the microscopic point of view, it appears that the RIA …

research product

Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters

International audience; A dedicated set of fibers elaborated via the Modified Chemical Vapor Deposition (MCVD) technique is used to study the influence of composition and drawing parameters on their responses to an X-ray pulse representative of the radiation environments associated with Megajoule class lasers. These canonical fibers were designed to highlight the impact of these parameters on the amplitude and kinetics of the transient pulsed X-ray Radiation Induced Attenuation (RIA) at room temperature. From preforms differing by their core composition, three optical fibers were elaborated by varying the tension and speed during the drawing process. No or only slight RIA change results fro…

research product

Evaluation of Distributed OFDR-Based Sensing Performance in Mixed Neutron/Gamma Radiation Environments

We report the study of a radiation resistant single mode optical fiber doped with fluorine exposed to mixed neutron and $\gamma $ -radiation up to $10^{17}$ n/cm2 fluence and >2 MGy dose to evaluate its performances when used as the sensing element of a distributed Optical Frequency Domain Reflectometry (OFDR). The use of complementary spectroscopic techniques highlights some differences between the responses of solely $\gamma $ -radiation (10 MGy) or mixed neutron and $\gamma $ ( $10^{17}$ n/cm $^{2}+>2$ MGy) irradiated samples. Those differences are linked to the defect generation rather than to structural changes of the ${a}$ -SiO2 host matrix. We show that a modification of the refracti…

research product

Role of diffusing molecular hydrogen on relaxation processes in Ge-doped glass

Temperature dependencies of steady-state and time-resolved photoluminescence (PL) from triplet state at 3.1 eV and singlet state at 4.2 eV ascribed to the twofold-coordinated Ge have been measured in unloaded and H2-loaded Ge-doped silica samples under 5.0 eV excitation in the 10–310 K range. Experimental evidences indicate that diffusing molecular hydrogen (H2) depopulates by a collisional mechanism the triplet state, decreasing both its lifetime of about 14% and the associated triplet PL intensity, whereas those of the singlet are insensitive to the presence of H2.

research product

Approche couplée pour le développement de matériaux optiques résistants aux radiations

National audience; De très nombreuses applications sont aujourd'hui envisagées pour les matériaux optiques en environnement radiatif. Ce regain d'intérêt pour l'usage de verres ou fibres optiques dans des environnements hostiles s'explique par leurs avantages inhérents en particulier leur immunité électromagnétique. En revanche, il est également bien établi que les radiations entrainent la génération de défauts ponctuels dans verres amorphes. Ces défauts vont, au niveau macroscopique, entrainer une altération des propriétés optiques du matériau, le plus souvent de la silice amorphe pure ou dopée. Ainsi, les fibres optiques vont, sous irradiation, voir leur atténuation linéique augmenter, po…

research product

Development of a Temperature Distributed Monitoring System Based On Raman Scattering in Harsh Environment

Raman Distributed Temperature Sensors (RDTSs) offer exceptional advantages to monitor the envisioned French deep geological repository for nuclear wastes, called Cigeo. Both $\gamma $ -ray and hydrogen release from nuclear wastes can strongly affect the temperature measurements made with RDTS. We present experimental studies on how the performances of RDTS evolve in harsh environments like those associated with $\gamma $ -rays or combined radiations and ${{\rm H}_2}$ release. The response of two standard and one radiation tolerant multimode fibers (MMFs) are investigated. In all fibers the differential induced attenuation between Stokes and anti-Stokes signal, ${({{\alpha _{\rm AS}} - {\alp…

research product

Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers

International audience; We applied theoretical and experimental spectroscopy tools to ad hoc silica-based "canonical" samples to characterize the influence of several dopants and of some drawing process parameters on their radiation sensitivities. We present in this paper, the recent advances and results occurring from our coupled approach. On the experimental side, we studied the doping influence on the response of optical fibers and showed that changing the drawing parameters has a negligible influence on the fiber response in the case of specialty fibers. We focus mainly on the ${rm SiE}^prime$ defect that is observed through Electron Paramagnetic Resonance (EPR) measurements in all cano…

research product

Irradiation temperature influence on the in-situ measured radiation induced attenuation of Ge-doped fibers

International audience; We report an experimental investigation on the radiation induced attenuation (RIA) in the ultraviolet-visible domain for Ge-doped optical fibers, during X-rays (10 keV) exposure at different temperatures. The objective is to characterize the impact of the irradiation temperature on the RIA levels and kinetics. Our data highlight that for dose exceeding 1 kGy(SiO2) the RIA spectrum changes with the irradiation temperature. In particular, for wavelengths below 470 nm the RIA depends both on the dose and on the irradiation temperature, whereas at higher wavelengths the RIA depends only on the dose. From the microscopic point of view the origin of this behavior is explai…

research product

Near-IR- and UV-femtosecond laser waveguide inscription in silica glasses

The influence of laser parameters on silica based waveguide inscription is investigated by using femtosecond laser pulses at 1030 nm (near-IR) and at 343 nm (UV). Negative phase contrast microscopy technique is used to measure the refractive index contrast for different photo-inscribed waveguides and shows the effects of both laser wavelength and scanning speed. In particular, UV photons have a higher efficiency in the waveguide production process as also confirmed by the lower optical losses at 1550 nm in these waveguides. These measurements are combined with micro-Raman and photoluminescence techniques, highlighting that laser exposure induces both structural modification of the silica an…

research product

Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels

International audience; We report a method for fabricating fiber Bragg gratings (FBG) resistant to very severe environments mixing high radiation doses (up to 3 MGy) and high temperatures (up to 230 degrees C). Such FBGs have been written in two types of radiation resistant optical fibers (pure-silica and fluorine-doped cores) by exposures to a 800 nm femtosecond IR laser at power exceeding 500 mW and then subjected to a thermal annealing treatment of 15 min at 750 degrees C. Under radiation, our study reveals that the radiation induced Bragg wavelength shift (BWS) at a 3 MGy dose is strongly reduced compared to responses of FBGs written with nonoptimized conditions. The BWS remains lower t…

research product

Resonance Raman of oxygen dangling bonds in amorphous silicon dioxide

We investigate the origin of a resonance Raman band induced by ionizing radiation in amorphous silicon dioxide (silica glass), which can be detected under ultraviolet laser excitation. A silica sample, rich of oxygen-excess related defects, was prepared by treating some length of a pure-silica-core multimode fiber in an O2 atmosphere (at high temperature and pressure) and by irradiating it with X-rays at 10 MGy(SiO2) dose. A micro-Raman study revealed a gaussian band peaking at 896 cm−1 with a full width at half maximum of 32 cm−1, which could be detected by exciting the sample with the 325-nm line of a HeCd laser. This spectral feature is absent in the Raman spectra performed with the 442-…

research product

Influence of Drawing Conditions on the Properties and Radiation Sensitivities of Pure-Silica-Core Optical Fibers

International audience; The structure and radiation sensitivities of three different pure-silica-core fluorine-doped-cladding optical fibers, made from the same original preform, were investigated by several experimental techniques. The fibers were obtained by changing the drawing speed and tension in the typical ranges of values used for the radiation-tolerant waveguides. The Raman spectroscopy revealed no significant difference among the fibers before irradiation. At variance, the comparison between the fibers and their associated preform highlighted an increase in the amplitude of the D2 band that is related to the concentration of 3 member rings. Moreover, in the zones where the D2 incr…

research product

Radiation Vulnerability of Fiber Bragg Gratings in Harsh Environments

International audience; The difficulties encountered in the implementation of a temperature or strain sensor based on fiber Bragg grating (FBG) in a harsh radiative environment are introduced. We present the choices made to select both a radiation-resistant fiber in terms of transmission and also the grating inscription conditions necessary to write radiation tolerant FBGs in such fibers with a femtosecond laser. The radiation response of these gratings was also studied under radiation at dose up to 1 MGy. The comparison between Ge-free and Ge-doped fibers was highlighted.

research product

Radiation Response of Ce-Codoped Germanosilicate and Phosphosilicate Optical Fibers

We report an experimental investigation on the effects of Ce-codoping in determining the radiation response of germanosilicate and phosphosilicate Optical Fibers (OFs) in the UV-Visible domain and up to doses of $1~\hbox{MGy}({\rm SiO}_{2})$ . We show that the addition of Ce strongly impacts the Radiation Induced Attenuation (RIA) of both types of fibers. In the first case the radiation induced losses increase, whereas in the second one decrease. By combining the online RIA measurements with the Electron Paramagnetic Resonance (EPR) ones, we are able to infer the basic microscopic mechanisms taking place under irradiation, which involve the cerium codopant and some of the known Ge-related o…

research product

Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors

International audience; We studied the responses of fiber-basedtemperature and strain sensors related to Optical FrequencyDomain Reflectometry (OFDR) and exposed to high γ-ray dosesup to 10 MGy. Three different commercial fiber classes areused to investigate the evolution of OFDR parameters withdose, thermal treatment and fiber core/cladding composition.We find that the fiber coating is affected by both thermal andradiation treatments and this modification results in anevolution of the internal stress distribution inside the fiber that influences its temperature and strain Rayleigh coefficients. These two environmental parameters introduce a relative error up to 5% on temperature and strain…

research product

Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H2 Loading

The radiation response of a phosphorus-doped multimode optical fiber is investigated under both transient (pulsed X-rays) and steady-state ( $\gamma $ - and X-rays) irradiations. The influence of a H2 preloading on the fiber radiation-induced attenuation (RIA) in the 300–2000-nm wavelength range has been characterized. To better understand the impact of this treatment, online behaviors of fiber samples containing different amounts of gas are compared from glass saturation (100%) to less than 1%. In addition to these in situ experiments, additional postirradiation spectroscopic techniques have been performed such as electron paramagnetic resonance or luminescence measurements to identify the…

research product

Radiation hardening of FBG in harsh environments

International audience; The difficulties encountered in the implementation of a temperature or strain sensor based on Fiber Bragg Grating in a harsh radiative environment are introduced. We present the choices made to select both a radiation-resistant fiber in terms of transmission and also the grating inscription conditions necessary to write radiation tolerant FBGs in such fibers with a femto-second laser. The response of different classes of gratings was also studied under radiation at high doses (>1MGy). The comparison between F- and Ge-doped fibers was highlighted.

research product