6533b831fe1ef96bd1298e6a

RESEARCH PRODUCT

Influence of the manufacturing process on the radiation sensitivity of fluorine-doped silica-based optical fibers

Antonino AlessiMarco CannasLavinia VaccaroYoucef OuerdaneClaude MarcandellaSylvain GirardAziz Boukenter

subject

Nuclear and High Energy Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]FabricationOptical fiberMaterials sciencebusiness.industryLuminescence optical fibers optical losses radiation effects.Dopingchemistry.chemical_elementRadiationlaw.inventionfibers silica radion effects luminescence optical absorptionOpticsRadiation sensitivityNuclear Energy and EngineeringchemistrylawFluorineOptoelectronicsElectrical and Electronic EngineeringbusinessLuminescenceAbsorption (electromagnetic radiation)

description

International audience; In this work, we analyze the origins of the observed differences between the radiation sensitivities of fluorine-doped optical fibers made with different fabrication processes. We used several experimental techniques, coupling in situ radiation-induced absorption measurements with post mortem confocal microscopy luminescence measurements. Our data showed that the silica intrinsic defects are generated both from precursor sites and from strained regular Si-O-Si linkages. Our work also provides evidence for the preponderant role of the chlorine in determining the optical losses at about 3.5 eV. The results show that the manufacturing process of these fibers strongly affects their radiation response.

https://doi.org/10.1109/radecs.2011.6131385