0000000000001200
AUTHOR
Claude Marcandella
Radiation Hardened Optical Frequency Domain Reflectometry Distributed Temperature Fiber-Based Sensors
International audience; We study the performance of Optical Frequency Domain Reflectometry (OFDR) distributed temperature sensors using radiation resistant single-mode optical fibers. In situ experiments under 10 keV X-rays exposure up to 1 MGy( SiO 2 ) were carried out with an original setup that allows to investigate combined temperature and radiation effects on the sensors within a temperature range from 30 ° C to 250 ° C. Obtained results demonstrate that optical fiber sensors based on Rayleigh technique are almost unaffected by radiation up to the explored doses. We show that a pre-thermal treatment stabilize the sensor performance increasing the accuracy on temperature measurement fro…
Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2
International audience; We investigated the effects of 10-keV X-ray radiation on the transmission properties of F-doped optical fibers in the 200–850 nm range of wavelengths (1.5–6 eV). We also studied the influence of pre-loading this kind of fibers with hydrogen on its radiation sensitivity. Our results showed that, for our experimental conditions (pre-treatment with H2 several months before irradiation with diffusion of all the H2 out the fiber core and cladding before X-ray exposure), this pre-treatment increases the radiation-induced attenuation in the ultraviolet part (200–300 nm) of the spectrum. A previous H2-loading has no influence at greater wavelengths. The nature of the radiati…
X-ray irradiation effects on fluorine-doped germanosilicate optical fibers
International audience; We report an experimental investigation on the effects of fluorine codoping on the radiation response of Ge-doped Optical Fibers (OFs) obtained by three different drawing conditions. The OFs were irradiated with 10 keV X-rays up to 300 Mrad and studied by online Radiation-Induced-Attenuation (RIA) measurements. Confocal Micro- Luminescence (CML) and Electron Paramagnetic Resonance (EPR) were also employed to investigate the permanent radiation-induced-defects. The variation of the Germanium-Lone-Pair-Center (GLPC) and Non-Bridging- Oxygen-Hole-Centers (NBOHC) concentration with the radiation dose is investigated by CML, whereas the ones of the induced Ge(1), Ge(2) an…
Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed x-ray irradiation
We investigated the nature, optical properties, and decay kinetics of point defects causing large transient attenuation increase observed in silica-based optical fibers exposed to short duration and high-dose rate x-ray pulses. The transient radiation-induced attenuation (RIA) spectra of pure-silica-core (PSC), Ge-doped, F-doped, and Ge + F-doped optical fibers (OFs) were acquired after the ionizing pulse in the spectral range of [∼0.8–∼3.2] eV (∼1500–∼380 nm), from a few ms to several minutes after the pulse, at both room temperature (RT) and liquid nitrogen temperature (LNT). Comparing the fiber behavior at both temperatures better highlights the thermally unstable point defects contribut…
Coupled experiment/simulation approach for the design of radiation-hardened rare-earth doped optical fibers and amplifiers
We developed an approach to design radiation-hardened rare earth -doped fibers and amplifiers. This methodology combines testing experiments on these devices with particle swarm optimization (PSO) calculations. The composition of Er/Yb-doped phosphosilicate fibers was improved by introducing Cerium inside their cores. Such composition strongly reduces the amplifier radiation sensitivity, limiting its degradation: we observed a gain decreasing from 19 dB to 18 dB after 50 krad whereas previous studies reported higher degradations up to 0°dB at such doses. PSO calculations, taking only into account the radiation effects on the absorption efficiency around the pump and emission wavelengths, co…
Near infrared radio-luminescence of O2 loaded radiation hardened silica optical fibers: A candidate dosimeter for harsh environments
We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O2 molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O2 loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O2 molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The results s…
Effects of radiation and hydrogen-loading on the performances of raman-distributed temperature fiber sensors
International audience; The integration of Raman-distributed temperature fiber-based sensors (RDTS) into the envisioned French deep geological repository for nuclear wastes, called Cigéo requires evaluating how the performances of RDTS evolve in harsh environments, more precisely in presence of H2 or γ-rays. Both H2 and radiations are shown to affect the temperature measurements made with the single-ended RDTS technology. The amplitudes of the observed effects depend on the different classes of multimode fibers varying in terms of composition and coatings. By selecting the most tolerant fiber structure for the sensing, we could maintain the RDTS performances for such application. A hardeni…
O2-Loading Treatment of Ge-Doped Silica Fibers: A Radiation Hardening Process
International audience; The effects of a high-pressure O2-loading treatment on the radiation response of Ge-doped optical fibers (OFs) were investigated. We found that the incorporation of high concentration of interstitial molecular oxygen remarkably enhances the resistance to ionizing radiation of Ge-doped OFs in the UV-Visible domain and, at the same time, improves the transmission of UV light in the unirradiated OF sample. By comparison with previously reported results, the O2-loading treatment turned out to increase the radiation resistance of Ge-doped OFs more efficiently than F or Ce codoping. The understanding of such amelioration relies in basic radiation-induced mechanisms that we…
Influence of neutron and gamma-ray irradiations on rad-hard optical fiber
We investigated point defects induced in rad-hard Fluorine-doped optical fibers using both a mixed source of neutrons (fluences from 1015 to 1017 n/cm2) and γ-rays (doses from 0.02 to 2 MGy) and by a γ-ray source (dose up to 10 MGy). By combining several complementary spectroscopic techniques such as radiation-induced attenuation, confocal micro-luminescence, time-resolved photo-luminescence and electron paramagnetic resonance, we evidenced intrinsic and hydrogen-related defects. The comparison between the two irradiation sources highlights close similarities among the spectroscopic properties of the induced defects and the linear correlation of their concentration up to 1016 n/cm2. These r…
Radiation effects on silica-based preforms and optical fibers-I: Experimental study with canonical samples
International audience; Prototype samples of preforms and associated fibers have been designed and fabricated through MCVD process to investigate the role of fluorine (F) and germanium (Ge) doping elements on the radiation sensitivity of silica-based glasses. We characterized the behaviors of these canonical samples before, during and after 10 keV X-ray irradiation through several spectroscopic techniques, to obtain global information (in situ absorption measurements, electron paramagnetic resonance) or spatially-resolved information (confocal microscopy, absorption and luminescence on preform). These tests showed that, for the Ge-doped fiber and in the 300–900 nm range, the radiation-induc…
Influence of <formula formulatype="inline"><tex Notation="TeX">${\hbox{O}}_2$</tex></formula>-Loading Pretreatment on the Radiation Response of Pure and Fluorine-Doped Silica-Based Optical Fibers
We investigated the impact of an oxygen preloading on pure-silica-core or fluorine-doped-core fiber responses to high irradiation doses (up to 1 MGy (SiO 2 )). Oxygen enrichment was achieved through a diffusion-based technique, and the long-term presence of O 2 molecules was confirmed by micro-Raman experiments. Online radiation induced attenuation (RIA) experiments were carried out in both the pristine and the O 2 -loaded optical fibers to investigate the differences induced by this pretreatment in the UV and visible ranges. Contrary to results recently published on the positive impact of O 2 on infrared RIA, our results reveal a RIA increase with O 2 presence. Data are analyzed in order t…
Raman investigation of the drawing effects on Ge-doped fibers
International audience; We have investigated the Raman activity of various germanosilicate fibers and their associated preforms. Our data indicate an enhancement in small rings' (3-member rings) concentration in the silica-based matrix of the fibers during the drawing process. The generation of such rings appears compatible with an increase of the sample density and fictive temperature. The data regarding the drawing effects on the fiber stress appear less clear, and it is possible to suggest that in some cases the drawing could lower the tensile stress. Finally we have also provided evidence that changing the drawing conditions within the usual range of application leads to no significant …
X-ray irradiation influence on prototype Er3+-optical fibers: confocal luminescence study
International audience; The integration of rare-earth doped optical fibers as part of fiber-based systems in space implies the development of waveguides tolerant to the radiation levels associated with the space missions. We report the spatial distribution, the photoluminescence (PL) properties of color centers and the related changes induced by X-rays radiation at different doses (50, 500 and 1000 krad) for two different prototypes of Er-doped optical fibers. Each sample (in the version pristine, X-irradiated and H2 loaded prior to radiation exposure) was characterized by confocal microscopy luminescence (CML) measurements in Visible range with Visible (488 nm) or UV (325 nm) laser light e…
Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers
International audience; We investigated the combined effects of temperature and X-rays exposures on the nature of point defects generated in Ge-doped multimode optical fibers. Electron paramagnetic resonance (EPR) results on samples X-ray irradiated at 5 kGy(SiO2), employing different temperatures and dose rates, are reported and discussed. The data highlight the generation of the Ge(1), Ge(2), E0 Ge and E0 Si defects. For the Ge(1) and Ge(2), we observed a decrease in the induced defect concentrations for irradiation temperatures higher than *450 K, whereas the E0 defects feature an opposite tendency. The comparison with previous post-irradiation thermal treatments reveals peculiar effects…
Steady state γ-ray radiation effects on Brillouin fiber sensors
International audience; Brillouin optical time-domain analysis (BOTDA) sensors offer remarkable advantages for the surveillance of the planned French deep geological radioactive wastes repository, called Cigéo1,2. In this work we study the performances of Brillouin distributed sensors in harsh environment. We evaluate the radiation tolerance of different sensor classes and their responses evolution during γ-ray exposition with 1kGy/h dose rate (to reach ~0.2MGy) and after 1, 3, 6 and 10 MGy accumulated doses. Measurements on strained Ge-doped SMF are reported to highlight the variation on Brillouin scattering proprieties, both intrinsic frequency position of Brillouin shift and its dependen…
X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions
International audience; We report an experimental study based on confocal microscopy luminescence (CML) and electron paramagnetic resonance (EPR) measurements to investigate the effects of the X-ray (from 50 krad to 200 Mrad) on three specific multistep Ge doped fibers obtained from the same preform by changing some of the drawing conditions (tension and speed). CML data show that, both before and after the irradiation, Germanium Lone Pair Center (GLPC) concentrations are similarly distributed along the diameters of the three fibers and they are partially reduced by irradiation. The irradiation induces also the Non Bridging Oxygen Hole Center (NBOHC) investigated by CML and other paramagnet…
Influence of the manufacturing process on the radiation sensitivity of fluorine-doped silica-based optical fibers
International audience; In this work, we analyze the origins of the observed differences between the radiation sensitivities of fluorine-doped optical fibers made with different fabrication processes. We used several experimental techniques, coupling in situ radiation-induced absorption measurements with post mortem confocal microscopy luminescence measurements. Our data showed that the silica intrinsic defects are generated both from precursor sites and from strained regular Si-O-Si linkages. Our work also provides evidence for the preponderant role of the chlorine in determining the optical losses at about 3.5 eV. The results show that the manufacturing process of these fibers strongly af…
Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers
International audience; We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-doped fibers, we observed that the Ge(1) and the Ge(2) d…
Raman based distributed fiber optic temperature sensors for structural health monitoring in radiation environment
Raman distributed temperature sensor (RDTS) measurements were performed during γ-radiation on three different classes of standard multimode fibers (pure, Ge-doped and F-doped). The sensor response is affected by the radiation induced attenuation phenomena leading to errors in the temperature measurements. The amplitude of this error strongly depends on the fiber type and the irradiation conditions. These results are promising in view of the integration of these RDTS into the deep geological repository for radioactive waste.
Pulsed X‐Ray Radiation Responses of Solarization‐Resistant Optical Fibers
International audience; The transient radiation‐induced attenuation (RIA) of two different versions of pure‐silica‐core (PSC) multimode optical fibers (so‐called “solarization‐resistant” fibers) exposed to nanosecond 1 MeV X‐ray pulses are investigated. On‐line RIA spectra measurements at both room temperature (RT) and liquid nitrogen temperatures (LNT) in the range 1–3.5 eV are performed. Following the RIA kinetics, the properties of the metastable defects that are bleached just after the pulse are discussed. The spectral decomposition of the RIA is performed using known Gaussian bands associated to point defects absorbing in this spectral range. For both fiber types, the generation and th…
Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorous‐Doped Optical Fibers
International audience; This work focuses on the effects of high dose ionizing radiation, up to 10 MGy(SiO2), on P‐doped multimode optical fibers (OF) at different irradiation temperatures. The investigation is based on two complementary experimental techniques: radiation‐induced attenuation (RIA) measurements and electron paramagnetic resonance (EPR). The latter technique allows measuring the P1, P2, metastable‐POHC and stable‐POHC defects. Three OF samples are drawn from the same preform to evaluate the influence of changing their drawing conditions of the OFs on the radiation responses. This first study is performed under X‐rays at room temperature. The results are compared with the ones…
Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers
International audience; We investigate the response of Ge-doped, P-doped, pure-silica, or Fluorine-doped fibers to extreme environments combining doses up to MGy(SiO $_{{{2}}}$) level of 10 keV X-rays and temperatures between 25 C and 300 C . First, we evaluate their potential to serve either as parts of radiation tolerant optical or optoelectronic systems or at the opposite, for the most sensitive ones, as punctual or distributed dosimeters. Second, we improve our knowledge on combined ionizing radiations and temperature (R&T) effects on radiation-induced attenuation (RIA) by measuring the RIA spectra in the ultraviolet and visible domains varying the R&T conditions. Our results reveal the…
Micro-Raman investigation of X or gamma irradiated Ge doped fibers
International audience; Micro-Raman spectra have been recorded on Ge doped optical fibers before and after 10 keV-X or c-ray irradiation up to doses of 1 MGy (X-ray) or 7.8 MGy (-ray). Our data provide evidence that, at such dose levels, the glass matrix is not modified in a detectable way. We observed that varying the Ge doping levels from 0 to about 11 wt.%, X or radiation sensitivity of the overall matrix remains unchanged. Such results are observed for fibers obtained with drawing conditions within the usual range used for the fabrication of specialty fibers as radiation-tolerant waveguides. Our data support the potentiality of fiberbased sensors using glass properties, e.g. Raman sc…
Radiation hardening techniques for rare-earth-based optical fibers and amplifiers
Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern …
Radiation effects on optical frequency domain reflectometry fiber-based sensor
International audience; We investigate the radiation effects on germanosilicate optical fiber acting as the sensing element of optical frequency domain reflectometry devices. Thanks to a new setup permitting to control temperature during irradiation, we evaluate the changes induced by 10 keV x rays on their Rayleigh response up to 1 MGy in a temperature range from −40°C up to 75°C. Irradiation at fixed temperature points out that its measure is reliable during both irradiation and the recovery process. Mixed temperature and radiation measurements show that changing irradiation temperature leads to an error in distributed measurements that depends on the calibration procedure. These results …
On-Line Characterization of Gamma Radiation Effects on Single-Ended Raman Based Distributed Fiber Optic Sensor
We report distributed temperature measurements based on Raman scattering performed during steady state $\gamma $ -ray irradiation at a dose rate of 1 kGy( ${\rm SiO}_{2}$ )/h and up to a total ionizing dose (TID) of $\sim 0.1\ \hbox{MGy}$ . We characterize on-line the evolution of the performances of a single-ended Raman distributed temperature sensor (RDTS) during the $\gamma $ -ray exposure of different classes of commercial multimode fibers (MMFs) acting as the sensing element. RDTS is influenced by the radiation-induced attenuation (RIA) phenomena leading to both large errors in the temperature measurements and a diminution of the useful sensing length. The amplitude of the radiation-in…
Influence of Ce codoping and H2 pre-loading on Er/Yb-doped fiber: Radiation response characterized by Confocal Micro-Luminescence
International audience; Confocal microscopy luminescence measurements were applied to study the X-ray radiation response of Er/Yb-doped optical fibers in connection with H2 pre-loading and with the addition of another lanthanide element (Cerium) in the core composition. Laser excitations at 488 nm and 325 nm allow deriving the emission and absorption pattern of Er3+, the latter derived from the dips appearing in a wide luminescence band related to defects in silica. We found that the luminescence spectrum of the X-irradiated Er/Yb-doped core fiber evidences an increase in the emission intensity around 520 and 660 nm; in contrast, no changes are induced by radiation neither after H2 pre-load…
Effect of irradiation temperature on the radiation induced attenuation of Ge-doped fibers
International audience; The UV-visible radiation induced attenuation (RIA) was studied in Ge-doped optical fibers, during X-ray (10 keV) irradiations at different temperatures. By comparing the spectra recorded in dissimilarly irradiated samples we evidenced the impact of the irradiation temperature. In details, we highlighted that, from a certain dose, increasing the temperature the RIA decreases for wavelengths lower than 470 nm, whereas at higher wavelengths the RIA depends only on the dose. Such findings suggest that it is possible to distinguish the irradiation temperature by comparing the signal at two different wavelengths. From the microscopic point of view, it appears that the RIA …
Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters
International audience; A dedicated set of fibers elaborated via the Modified Chemical Vapor Deposition (MCVD) technique is used to study the influence of composition and drawing parameters on their responses to an X-ray pulse representative of the radiation environments associated with Megajoule class lasers. These canonical fibers were designed to highlight the impact of these parameters on the amplitude and kinetics of the transient pulsed X-ray Radiation Induced Attenuation (RIA) at room temperature. From preforms differing by their core composition, three optical fibers were elaborated by varying the tension and speed during the drawing process. No or only slight RIA change results fro…
Evaluation of Distributed OFDR-Based Sensing Performance in Mixed Neutron/Gamma Radiation Environments
We report the study of a radiation resistant single mode optical fiber doped with fluorine exposed to mixed neutron and $\gamma $ -radiation up to $10^{17}$ n/cm2 fluence and >2 MGy dose to evaluate its performances when used as the sensing element of a distributed Optical Frequency Domain Reflectometry (OFDR). The use of complementary spectroscopic techniques highlights some differences between the responses of solely $\gamma $ -radiation (10 MGy) or mixed neutron and $\gamma $ ( $10^{17}$ n/cm $^{2}+>2$ MGy) irradiated samples. Those differences are linked to the defect generation rather than to structural changes of the ${a}$ -SiO2 host matrix. We show that a modification of the refracti…
Radiation Response of Ce-Doped Phosphosilicate Optical Fibers
International audience; We report an experimental study of the radiation effects on silica-based multimode optical fibers (OFs) either doped with Phosphorus or with Phosphorus and Cerium. Online Radiation-Induced-Absorption (RIA) measurements were performed in the UV-visible spectral domain under 10 keV X-ray Irradiation. Optical Absorption (OA) in the Near Infrared Region (NIR) and Electron Paramagnetic Resonance (EPR) measurements were also performed on γ-irradiated OFs.
Design of Radiation-Hardened Rare-Earth Doped Amplifiers through a Coupled Experiment/Simulation Approach
International audience; We present an approach coupling a limited experimental number of tests with numerical simulations regarding the design of radiation-hardened (RH) rare earth (RE)-doped fiber amplifiers. Radiation tests are done on RE-doped fiber samples in order to measure and assess the values of the principal input parameters requested by the simulation tool based on particle swarm optimization (PSO) approach. The proposed simulation procedure is validated by comparing the calculation results with the measured degradations of two amplifiers made with standard and RH RE-doped optical fibers, respectively. After validation, the numerical code is used to theoretically investigate the …
Development of a Temperature Distributed Monitoring System Based On Raman Scattering in Harsh Environment
Raman Distributed Temperature Sensors (RDTSs) offer exceptional advantages to monitor the envisioned French deep geological repository for nuclear wastes, called Cigeo. Both $\gamma $ -ray and hydrogen release from nuclear wastes can strongly affect the temperature measurements made with RDTS. We present experimental studies on how the performances of RDTS evolve in harsh environments like those associated with $\gamma $ -rays or combined radiations and ${{\rm H}_2}$ release. The response of two standard and one radiation tolerant multimode fibers (MMFs) are investigated. In all fibers the differential induced attenuation between Stokes and anti-Stokes signal, ${({{\alpha _{\rm AS}} - {\alp…
Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers
International audience; We applied theoretical and experimental spectroscopy tools to ad hoc silica-based "canonical" samples to characterize the influence of several dopants and of some drawing process parameters on their radiation sensitivities. We present in this paper, the recent advances and results occurring from our coupled approach. On the experimental side, we studied the doping influence on the response of optical fibers and showed that changing the drawing parameters has a negligible influence on the fiber response in the case of specialty fibers. We focus mainly on the ${rm SiE}^prime$ defect that is observed through Electron Paramagnetic Resonance (EPR) measurements in all cano…
Irradiation temperature influence on the in-situ measured radiation induced attenuation of Ge-doped fibers
International audience; We report an experimental investigation on the radiation induced attenuation (RIA) in the ultraviolet-visible domain for Ge-doped optical fibers, during X-rays (10 keV) exposure at different temperatures. The objective is to characterize the impact of the irradiation temperature on the RIA levels and kinetics. Our data highlight that for dose exceeding 1 kGy(SiO2) the RIA spectrum changes with the irradiation temperature. In particular, for wavelengths below 470 nm the RIA depends both on the dose and on the irradiation temperature, whereas at higher wavelengths the RIA depends only on the dose. From the microscopic point of view the origin of this behavior is explai…
Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels
International audience; We report a method for fabricating fiber Bragg gratings (FBG) resistant to very severe environments mixing high radiation doses (up to 3 MGy) and high temperatures (up to 230 degrees C). Such FBGs have been written in two types of radiation resistant optical fibers (pure-silica and fluorine-doped cores) by exposures to a 800 nm femtosecond IR laser at power exceeding 500 mW and then subjected to a thermal annealing treatment of 15 min at 750 degrees C. Under radiation, our study reveals that the radiation induced Bragg wavelength shift (BWS) at a 3 MGy dose is strongly reduced compared to responses of FBGs written with nonoptimized conditions. The BWS remains lower t…
Radiation Vulnerability of Fiber Bragg Gratings in Harsh Environments
International audience; The difficulties encountered in the implementation of a temperature or strain sensor based on fiber Bragg grating (FBG) in a harsh radiative environment are introduced. We present the choices made to select both a radiation-resistant fiber in terms of transmission and also the grating inscription conditions necessary to write radiation tolerant FBGs in such fibers with a femtosecond laser. The radiation response of these gratings was also studied under radiation at dose up to 1 MGy. The comparison between Ge-free and Ge-doped fibers was highlighted.
Radiation Response of Ce-Codoped Germanosilicate and Phosphosilicate Optical Fibers
We report an experimental investigation on the effects of Ce-codoping in determining the radiation response of germanosilicate and phosphosilicate Optical Fibers (OFs) in the UV-Visible domain and up to doses of $1~\hbox{MGy}({\rm SiO}_{2})$ . We show that the addition of Ce strongly impacts the Radiation Induced Attenuation (RIA) of both types of fibers. In the first case the radiation induced losses increase, whereas in the second one decrease. By combining the online RIA measurements with the Electron Paramagnetic Resonance (EPR) ones, we are able to infer the basic microscopic mechanisms taking place under irradiation, which involve the cerium codopant and some of the known Ge-related o…
Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H2 Loading
The radiation response of a phosphorus-doped multimode optical fiber is investigated under both transient (pulsed X-rays) and steady-state ( $\gamma $ - and X-rays) irradiations. The influence of a H2 preloading on the fiber radiation-induced attenuation (RIA) in the 300–2000-nm wavelength range has been characterized. To better understand the impact of this treatment, online behaviors of fiber samples containing different amounts of gas are compared from glass saturation (100%) to less than 1%. In addition to these in situ experiments, additional postirradiation spectroscopic techniques have been performed such as electron paramagnetic resonance or luminescence measurements to identify the…
Radiation hardening of FBG in harsh environments
International audience; The difficulties encountered in the implementation of a temperature or strain sensor based on Fiber Bragg Grating in a harsh radiative environment are introduced. We present the choices made to select both a radiation-resistant fiber in terms of transmission and also the grating inscription conditions necessary to write radiation tolerant FBGs in such fibers with a femto-second laser. The response of different classes of gratings was also studied under radiation at high doses (>1MGy). The comparison between F- and Ge-doped fibers was highlighted.