6533b82efe1ef96bd1293c6d

RESEARCH PRODUCT

Steady state γ-ray radiation effects on Brillouin fiber sensors

C. CangialosiSylvain GirardYoucef OuerdaneAziz BoukenterMarco CannasP. PailletClaude MarcandellaSylvie Delepine-lesoilleEmmanuel Marin

subject

Optical fiberStrain sensorOptical fiberMaterials scienceCondensed Matter PhysicRadiation7. Clean energyDistributed temperature sensorlaw.invention[SPI]Engineering Sciences [physics]OpticslawBrillouin scatteringFiberElectrical and Electronic EngineeringSteady statebusiness.industryScatteringElectronic Optical and Magnetic MaterialComputer Science Applications1707 Computer Vision and Pattern RecognitionApplied MathematicBrillouin zoneGamma radiationFiber optic sensorOptoelectronicsbusinessBrillouin scatteringBotdaRadiactive waste

description

International audience; Brillouin optical time-domain analysis (BOTDA) sensors offer remarkable advantages for the surveillance of the planned French deep geological radioactive wastes repository, called Cigéo1,2. In this work we study the performances of Brillouin distributed sensors in harsh environment. We evaluate the radiation tolerance of different sensor classes and their responses evolution during γ-ray exposition with 1kGy/h dose rate (to reach ~0.2MGy) and after 1, 3, 6 and 10 MGy accumulated doses. Measurements on strained Ge-doped SMF are reported to highlight the variation on Brillouin scattering proprieties, both intrinsic frequency position of Brillouin shift and its dependence on temperature and strain

https://doi.org/10.1117/12.2194990