6533b7d6fe1ef96bd12666f1
RESEARCH PRODUCT
Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing
Marco CannasSylvain GirardSimonpietro AgnelloYoucef OuerdaneAziz BoukenterAntonino Alessisubject
Optical fiberMaterials sciencechemistry.chemical_elementGermanium02 engineering and technology01 natural sciencesFiber silica drawing Ge-doping defects optical absorption microluminescence electron paramagnetic resonancelaw.invention010309 opticsOpticslaw0103 physical sciencesIrradiationFiber[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryDoping021001 nanoscience & nanotechnologyCrystallographic defectAtomic and Molecular Physics and Opticschemistry060.2310) Fiber optics; (160.2220) Defect-center materials; (300.6370) Spectroscopy microwave; (350.5610) Radiation; (300.2140) Emission.0210 nano-technologybusinessLuminescenceRefractive indexdescription
International audience; We have studied the generation mechanisms of two different radiation-induced point defects, the Ge(1) and Ge(2) centers, in a germanosilicate fiber and in its original preform. The samples have been investigated before and after X-ray irradiation using the confocal microscopy luminescence and the electron paramagnetic resonance techniques. Our experimental results show the higher radiation sensitivity of the fiber as compared to the perform and suggest a relation between Ge(1) and Ge(2) generation. To explain our data we have used different models, finding that the destruction probability of the Ge(1) and Ge(2) defects is larger in fiber than in preform, whereas the generation one is similar. Finally we found that the higher radiation sensitivity of the fiber at low doses is essentially related to the presence of germanium lone pair center generated by the drawing.
year | journal | country | edition | language |
---|---|---|---|---|
2011-06-01 |