0000000000606963
AUTHOR
H. Nilgens
Hadamard NMR imaging with slice selection
Stochastic NMR imaging is one of the less common NMR imaging techniques. Nevertheless, stochastic rf excitation is characterized by some remarkable features: the rf excitation power is at least two orders of magnitude lower in comparison to conventionally pulsed NMR imaging schemes. Thus, the technique is of interest for imaging of large objects. The systematic noise inherent in images obtained with random noise excitation has been eliminated by using pseudorandom noise together with Hadamard transformation for data evaluation. Data acquisition times are comparable to those of ultrafast imaging techniques. For slice selection, z magnetization is destroyed outside the slice region with speci…
Helium-3-MRT der Lungenventilation: Erste klinische Anwendungen
PURPOSE: of the study is the visualisation of normal pulmonary ventilation in healthy volunteers and the evaluation of abnormalities in patients with different lung diseases using 3He magnetic resonance imaging (3He-MRI). MATERIAL AND METHODS: Hyperpolarized 3He gas (V = 300 ml, p = 3 x 10(5) Pa, polarised to 35-45% by optical pumping, provided in special glass cells) was inhaled by eight healthy volunteers and ten patients with different lung diseases. A 3D FLASH sequence (TR = 11.8 ms; TE = 5 ms; matrix 144 x 256, FOV 350 mm, section thickness 7-10 mm, coronal orientation) was performed in a single breath-hold (22-42 s). Clinical and radiological examinations were available for correlatio…
Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging.
To assess the feasibility of helium-3 magnetic resonance (MR) imaging with a three-dimensional fast low-angle shot (FLASH) sequence, He-3 gas (volume, 300 mL; pressure, 3 x 10(5) Pa; polarized up to 45% by means of optimal pumping) was inhaled by five healthy volunteers and five patients with pulmonary diseases. All breath-hold examinations (22-42 seconds) were completed successfully. Normal ventilation was depicted with homogeneous high signal intensity, lesions were depicted as causing defects, and obstructive lung disease was depicted with severely inhomogeneous signal intensity.