0000000000608473

AUTHOR

Johannes Roesel

Mechanisms of Resistance to the FLT3-Tyrosine Kinase Inhibitor PKC412 in Patients with AML.

Abstract The FLT3 receptor tyrosine kinase is expressed in 70-90% of cases of AML. Up to 35% of patients with AML show mutations in the JM-region or kinase domain of FLT3. These lead to autophosphorylation promoting ligand-independent cell proliferation and inhibition of apoptosis. Treatment with FLT3 tyrosine kinase inhibitors (TKI) is a promising tool in therapy of AML. Preliminary results investigating the FLT3-TKI PKC412 in patients with relapsed/refractory AML revealed that 11/15 patients (73%) with mutated FLT3 and 16/46 patients (35%) with WT FLT3 showed a >50% blast response in peripheral blood (Estey E et al. Blood.2003; 102:919a). Despite its remarkable efficacy in reducing…

research product

Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain.

Activating mutations in the FLT3 tyrosine kinase (TK) occur in approximately 35% of patients with acute myeloid leukemia (AML). Therefore, targeting mutated FLT3 is an attractive therapeutic strategy, and early clinical trials testing FLT3 TK inhibitors (TKI) showed measurable clinical responses. Most of these responses were transient; however, in a subset of patients blast recurrence was preceded by an interval of prolonged remission. The etiology of clinical resistance to FLT3-TKI in AML is unclear but is of major significance for the development of future therapeutic strategies. We searched for mechanisms of resistance in 6 patients with AML who had relapses upon PKC412 treatment. In an …

research product