0000000000608563
AUTHOR
Yoshiaki Ikuta
UV–VUV laser induced phenomena in SiO2 glass
Abstract Creation and annihilation of point defects were studied for SiO2 glass exposed to ultraviolet (UV) and vacuum UV (VUV) lights to improve transparency and radiation toughness of SiO2 glass to UV–VUV laser light. Topologically disordered structure of SiO2 glass featured by the distribution of SiOSi angle is a critical factor degrading transmittance near the fundamental absorption edge. Doping with terminal functional groups enhances the structural relaxation and reduces the number of strained SiOSi bonds by breaking up the glass network without creating the color centers. Transmittance and laser toughness of SiO2 glass for F2 laser is greatly improved in fluorine-doped SiO2 glass…
Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping
Abstract The vacuum-ultraviolet fundamental absorption edge (‘Urbach edge’) of four types of synthetic silica glasses, ‘wet’, ‘dry’, and doped by 570 and 6010 ppm wt. fluorine, was studied in the absorption coefficient range (1 cm−1–500 cm−1) at room temperature. The absorption edge has exponential form in agreement with the Urbach’s rule. The well-documented increase of vacuum-ultraviolet transparency upon fluorine doping is due to a steeper absorption edge (shorter ‘Urbach tail’) as compared to undoped silicas. The increase of the edge slope in F-doped silica occurs already the lower dopant concentration (570 ppm), the slope does not increase further in the 6010 ppm doped glass. These fin…