0000000000608967
AUTHOR
Domenico Patanè
Spatially resolved SO2 flux emissions from Mt Etna
We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure-fed eruption in the upper Valle del Bove. We demonstrate that our vent-resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Acti…
Insights into magma and fluid transfer at Mount Etna by a multiparametric approach: A model of the events leading to the 2011 eruptive cycle
[1] Since the second half of the 1990s, the eruptive activity of Mount Etna has provided evidence that both explosive and effusive eruptions display periodic variations in discharge and eruption style. In this work, a multiparametric approach, consisting of comparing volcanological, geophysical, and geochemical data, was applied to explore the volcano's dynamics during 2009–2011. In particular, temporal and/or spatial variations of seismicity (volcano-tectonic earthquakes, volcanic tremor, and long-period and very long period events), ground deformation (GPS and tiltmeter data), and geochemistry (SO2 flux, CO2 flux, CO2/SO2 ratio) were studied to understand the volcanic activity, as well as…
The marine activities performed within the TOMO-ETNA experiment
<p>The TOMO-ETNA experiment was planned in order to obtain a detailed geological and structural model of the continental and oceanic crust beneath Mt. Etna volcano and northeastern Sicily up to the Aeolian Islands (southern Italy), by integrating data from active and passive refraction and reflection seismic methodologies, magnetic and gravity surveys. This paper focuses on the marine activities performed within the experiment, which have been carried out in the Ionian and Tyrrhenian Seas, during three multidisciplinary oceanographic cruises, involving three research vessels (“Sarmiento de Gamboa”, “Galatea” and “Aegaeo”) belonging to different countries and institutions. During the o…
Dynamics of mild strombolian activity on Mt. Etna
Abstract Here we report the first measurements of gas masses released during a rare period of strombolian activity at the Bocca Nuova crater, Mt. Etna, Sicily. UV camera data acquired for 195 events over an ≈ 27 minute period (27th July 2012) indicate erupted SO2 masses ranging from ≈ 0.1 to ≈ 14 kg per event, with corresponding total gas masses of ≈ 0.1 to 74 kg. Thus, the activity was characterised by more frequent and smaller events than typically associated with strombolian activity on volcanoes such as Stromboli. Events releasing larger measured gas masses were followed by relatively long repose periods before the following burst, a feature not previously reported on from gas measureme…
High time resolution fluctuations in volcanic carbon dioxide degassing from Mount Etna
Abstract We report here on the first record of carbon dioxide gas emission rates from a volcano, captured at ≈ 1 Hz. These data were acquired with a novel technique, based on the integration of UV camera observations (to measure SO2 emission rates) and field portable gas analyser readings of plume CO2/SO2 ratios. Our measurements were performedat the North East crater of Mount Etna, southern Italy, and the data reveal strong variability in CO2 emissions over timescales of tens to hundreds of seconds, spanning two orders of magnitude. This carries importantimplications for attempts to constrain global volcanic CO2 release to the atmosphere, and will lead to an increased insight into short te…
Patterns in the recent 2007-2008 activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations
[1] Seismic, deformation, and volcanic gas observations offer independent and complementary information on the activity state and dynamics of quiescent and eruptive volcanoes and thus all contribute to volcanic risk assessment. In spite of their wide use, there have been only a few efforts to systematically integrate and compare the results of these different monitoring techniques. Here we combine seismic (volcanic tremor and long-period seismicity), deformation (GPS), and geochemical (volcanic gas plume CO2/SO2 ratios) measurements in an attempt to interpret trends in the recent (2007–2008) activity of Etna volcano. We show that each eruptive episode occurring at the Southeast Crater (SEC)…