Optical pulling and pushing forces in bilayer PT-symmetric structures
Photons are massless, yet can exert force on small particles. This $r\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}d\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}a\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}o\phantom{\rule{0}{0ex}}n$ $p\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}e\phantom{\rule{0}{0ex}}s\phantom{\rule{0}{0ex}}s\phantom{\rule{0}{0ex}}u\phantom{\rule{0}{0ex}}r\phantom{\rule{0}{0ex}}e$, though discussed by Kepler, still needs investigation for modern systems. This study reveals that the optical force exerted on a parity-time-symmetric bilayer with balanced gain and loss can be $a\phantom{\rule{0}{0ex}}s\phantom{\rule{0}{0ex}}y\phantom{\rule{0}{0…
Optical force rectifiers based on PT-symmetric metasurfaces
We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally. R.A. and B.G. would like to acknowledge financial support from the Max Planck Society. J.C. acknowledges the suppor…