0000000000610774
AUTHOR
A. Mangano
Investigation on pixellated CZT detectors coupled with a low power readout ASIC
In this work, we investigated on the spectroscopic performances of two pixellated CZT detectors coupled with a custom low noise and low power readout ASIC. The detectors (10 x 10 x 1 mm3 and 10 x 10 x 2 mm3 single crystals) consist of an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 μm BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) characterized by a dynamic range from 10 keV to 100 keV, low power consumption (0.5 mW/channel) and low noise (150–500 electrons r.m.s.). The spectroscopic results point out the good energy resolution of both detectors at room temperature (5.8 % FWHM at 59.5 keV for the 1 mm thick detec…
Time structure of the extensive air shower front
Abstract The GREX/COVER_PLASTEX experiment has measured the temporal and spatial fine structure of the EAS disc at sea level in a new and original way, using resistive plate counter detectors for direct measurements of the arrival time of each particle crossing the detector. Data were taken at EAS core distances up to 100 m for shower size N > 105 (PeV energy range). Arrival times of shower particles were measured with nanosecond accuracy. More than 450000 air shower events have been included in this analysis.
Air fluorescence efficiency measurements for AIRWATCH based mission: Experimental set-up
In the framework of the AIRWATCH project we present an experimental set-up to measure the efficiency of the UV fluorescence production of the air using hard X-ray stimulus. The measures will be carried out at different pressure and temperature to emulate the same condition of the upper layers of the atmosphere where X-ray and gamma ray photons of Gamma Ray Bursts are absorbed.
Results from the ULTRA experiment in the framework of the EUSO project
The detection of Cerenkov light from EAS in a delayed coincidence with fluorescence light gives a strong signature to discriminate protons and neutrinos in cosmic rays. For this purpose, the ULTRA experiment has been designed with 2 detectors: a small EAS array (ETscope) and an UV optical device including wide field (Belenos) and narrow field (UVscope) Cerenkov light detectors. The array measures the shower size and the arrival direction of the incoming EAS, while the UV devices, pointing both to zenith and nadir, are used to determine the amount of direct and diffused coincident Cerenkov light. This information, provided for different diffusing surfaces, will be used to verify the possibil…
Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment
Abstract The Uv Light Transmission and Reflection in the Atmosphere (ULTRA) experiment has been designed to provide quantitative measurements of the backscattered Cherenkov signal associated to the Extensive Air Showers (EAS) at the impact point on the Earth surface. The knowledge of such information will test the possibility to detect the diffused Cherenkov light spot from space within the Ultra high-energy cosmic ray observation. The Cherenkov signal is necessary to give an absolute reference for the track, allowing the measurement of the shower maximum and easing the separation between neutrino and hadronic showers. In this paper we discuss the experimental set-up with detailed informati…
The atmospheric nightglow in the 300– wavelength
Abstract The balloon-borne experiment, named BAckground BYpass (BABY) belongs to a wider program that has as its final goal the detection and study of high-energy cosmic rays from space (satellite, Space Station). An information of fundamental importance for this class of projects concerns the nighttime background light. The instrument designed to detect fluorescence photons is basically composed of two collimated photomultipliers: a single photon-counting PMT and a charge integration PMT. We briefly report the details of the design, operation and performance of the detector, which was designed and completely built at the IFCAI–CNR Institute in Palermo. Preliminary analysis and results of t…
Characterization of a CZT focal plane small prototype for hard X-ray telescope
The promise of good energy and spatial resolution coupled with high efficiency and room temperature operation has fuelled a large international effort to develop cadmium zinc telluride (CZT) for hard X-ray applications. We are involved on the development of a hard X-ray telescope based on multilayer optics and focal plane detector operative in the 10-80 keV energy range. This telescope requires a high efficiency focal plane providing both fine spatial resolution and spectroscopy with a compact and robust design. This paper reports preliminary results on the characterization both in spectroscopic and spatial response of two small pixellated CZT detectors (10times10times1 mm3 and 10times10tim…
Detection of the Cherenkov light diffused by sea water with the ULTRA experiment
The study of Ultra High Energy Cosmic Rays represents one of the most challenging topic in the Cosmic Rays and in the Astroparticle Physics fields. The interaction of primary particles with atmospheric nuclei produces a huge Extensive Air Shower together with isotropic emission of UV fluorescence light and highly directional Cherenkov photons, that are reflected/diffused isotropically by the impact on the Earth's surface or on high optical depth clouds. For space-based observations, detecting the reflected Cherenkov signal in a delayed coincidence with the fluorescence light improves the accuracy of the shower reconstruction in space and in particular the measurement of the shower maximum, …
Layout and performance of RPC used in the Argo-YBJ experiment
The layout of the RPCs, used in the Argo-YBJ experiment to image with a high space-time granularity the atmospheric shower, is described in this paper. The detector has been assembled to provide both digital and analog informations in order to cover a wide particle density range with a time accuracy of 1 ns. The experimental results obtained operating the chambers in streamer mode at sea level with a standard gas mixture are presented. (c) 2006 Elsevier B.V. All rights reserved.
FIGARO IV: Large-area balloon-borne telescope to study rapid time variabilities in the gamma-ray sources at energies above 50 MeV
We present a new γ-ray telescope based on the Limited Streamer Tube technology, used as tracking chambers to detect photons above 100 MeV. This technique allows to obtain very large sensitive areas (16 m2 in our experiment), together with a good angular resolution for payloads embarcable in high-altitude balloon flights. The capability to collect a large signal in a short exposure time makes the telescope particularly suitable and competitive with respect to satellite-based detectors for studying both periodic and random time variabilities on galactic and extragalactic γ-ray sources.